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Abstract

This thesis addresses the problem of retrieving videos that contain a specific object. To avoid
indexing visual content of a fixed corpus of videos, a two-stage approach is adopted. First, a
short-list of videos is obtained from a video sharing site, then, the short-list is re-ranked based
on the visual content. In particular, given a name or phrase specifying an object, images and
videos are collected from the Internet possibly depicting the object using a textual query on
their name or annotation. Each video is divided into shots. Novel shot detector based on fast
wide-baseline matching is proposed. A visual model of the object is constructed from the images.
Video frames of each shot are efficiently matched to the visual model through local image features.
Shot relevance is defined as the duration of the visibility of the object of interest.

To evaluate the video re-ranking task, a novel fully annotated multimedia dataset, called Specific
Object Search dataset, is introduced. The dataset contains videos and images of 10 specific objects
such as building landmarks, art paintings, architectonic monuments, etc. Additionally, confuser
videos are collected. These videos do not contain the query object but are returned by video-
sharing server when queried by the object identifier string. All videos contain frame-based
annotation. The implementation of the proposed method runs at 208 frames per second. Averaged
over the ten landmarks, it achieves the 0.95 recall, 0.65 mean precision 0.65, and mean Average
Precision of 0.92.

In multiple stages of the approach, local features are exploited. Extraction and matching of
those features is the most time consuming step of the whole pipeline. A novel similarity-covariant
feature detector that extracts points whose neighborhoods, when treated as a 3D intensity surface,
have a saddle-like intensity profile is proposed. The saddle condition is verified efficiently by
intensity comparisons on two concentric rings that must have exactly two dark-to-bright and two
bright-to-dark transitions satisfying certain geometric constraints. Saddle is a fast approximation
of Hessian detector as ORB, that implements the FAST detector, is for Harris detector. Novel
matching strategy called the first geometric inconsistent with binary descriptors is proposed.
This matching strategy is suitable for our feature detector, including experiments with fix point
descriptors hand-crafted and learned.

Experiments show that the Saddle features are general, evenly spread and appearing in high
density in a range of images. The Saddle detector is among the fastest proposed. In comparison
with detector with similar speed, the Saddle features show superior matching performance on
number of challenging datasets. Compared to recently proposed deep-learning based interest
point detectors and popular hand-crafted keypoint detectors, evaluated for repeatability in the
Apollo Scape dataset, the Saddle detectors shows the best performance in most of the street-level
view sequences a.k.a. traversals.
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Abstrakt

Práce se zabývá problémem vyhledávání videí obsahujících konkrétní objekt. Abychom se vyhnuli
indexování vizuálního obsahu neměnného korpus videí, používáme dvoufázový přístup. Nejprve
je získán krátký seznam videí z webu pro sdílení videí, a tento seznam je poté seřazen podle
vizuálního obsahu. Podle názvu či fráze specifikující objekt se z internetu získají obrázky a
videa pravděpodobně znázorňující objekt, a to na základě textového dotazu na jejich název či
anotaci. Každé video je rozděleno na jednotlivé záběry. Práce navrhuje nový detektor záběrů
založený na wide-baseline matching. Z obrázků je sestrojen vizuální model objektu. Snímky videa
z každého záběru jsou efektivně porovnány s vizuálním modelem pomocí lokálních příznaků
obrazu. Relevantnost záběru je pak definována jako doba viditelnosti objektu zájmu.

K vyhodnocení úlohy řazení videí představujeme novou, plně anotovanou, datovou sadu:
Specific Object Search dataset. Datová sada obsahuje videa a obrázky 10 konkrétních objektů
jako významné budovy, malby, architektonické památky, atd. Součástí sady jsou i "matoucí"videa,
která neobsahují dotazovaný objekt, ale byla nalezena na serveru pro sdílení videí podle textového
popisu objektu. Všechna videa obsahují anotaci jednotlivých snímků. Implementace navržené
metody zpracuje 208 snímků za sekundu. Průměrně (přes všech 10 objektů) dosahuje 0.95 úplnost,
0.65 mean přesnost a 0.92 průměrný přesnost.

V několika úrovních navržené metody se využívá lokálních příznaků. Extrakce těchto příznaků
a hledání jejich korespondencí je časově nejnáročnějším krokem celé metody. Práce navrhuje nový
detektor podobnostně-kovariantních příznaků, který extrahuje body, jejichž okolí - vnímané jako
3D intenzitní profil - má sedlový profil intenzity. Tato sedlová podmínka je efektivně ověřována po-
rovnáváním intenzit dvou soustředných kruhů, které musí mít přesně dva přechody tmavá->světlá
a světlá->tmavá splňující určitá geometrická omezení. Saddle je rychlá aproximace Hessian
detektoru, podobně jako je ORB (která implementuje FAST detektor) pro Harris detektor. Práce
navrhuje novou strategii hledání korespondencí zvanou První geometricky nekonzistentní pomocí
binárních descriptorů. Tato strategie je vhodná pro náš detektor příznaků, včetně experimentů s
ručně navrženými a naučenými deskriptory fixních bodů.

Experimenty ukazují, že Saddle příznaky jsou obecné, rovnoměrně rozšířené a objevující se ve
vysoké hustotě v řadě obrázků. Saddle detektor se řadí mezi nejrychlejší. V porovnání s detektory
srovnatelné rychlosti ukazují příznaky Saddle lepší výsledky v hledání korespondencí na několika
náročných datových sadách. Ve srovnání s nedávno navrženými detektory významných bodů
založenými na hlubokém učení a s populárními detektory ručně navržených příznaků, které bylo
vyhodnoceno na Appolo Scape datasetu, dosahuje Saddle detektor nejlepších výsledků na většině
uličních sekvencí (známých jako "traversals").

Klíčová slova: Přeřazování videí, detekce relevantních záběrů, detekce hranic záběrů,
vyhledávání specifických objektů, body zájmu, rychlé detektory, srovnávání obrázků.
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Chapter 1

Introduction

1.1 Motivation

The multimedia content shared over the Internet is growing very fast in last years.
According to YouTube statistics [209], over 6 billion hours of video are watched
each month and 100 hours are uploaded every minute in 2017. Sharing photos is the
most popular activity on the social networks, for instance, according to Instagram
60 million photos are uploaded daily to its servers [69] in 2014. Flickr reports 1.6
millions of new photos every day [114] in 2014. These numbers have awakened the
interest of the scientific community to design efficient ways of querying web-scale
image and video databases.

The problem of searching multimedia documents in large databases is called
retrieval or indexing. In image/video retrieval content-based methods analyze the
contents of the images rather than the metadata (keywords, tags, or descriptions) asso-
ciated with them. In this context, the image content involves colors, shapes, textures,
or any other information that can be derived from the pixels. Even with manually
annotated images, the search can be very time-consuming and the annotation may
not capture the desired description of the image. The evaluation of the effectiveness
of keyword image search is subjective and has not been well-defined [46].

Popular video search engines like YouTube, Dailymotion, Yahoo Screen, Bing
video, AOL video, eHOW, MeFeedia, 360daily, Veoh, Vimeo, Vevo among others, do
not perform content-based search to query the videos. The input of the search is text,
hence full-text search is performed over the filename, description inserted by the
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owner of the video, and the comments written by other users of the website. Engines
like YouTube use different factors to categorize and rank the videos. Typically,
videos are ranked by the on-page and off-page Search Engine Optimization (SEO)
factors. By SEO factors, the website and its content are designed to be highly
relevant for both search engines and searchers. Basically, websites are indexed for
the appropriate keywords, as well as marketing-focused tasks [47]. In addition to the
number of links that reference the video and the video’s age, YouTube also weights
the video scores based on the number of views, rating, comments, and more [83].
Therefore, there is no guarantee that videos in the top of the list depict the object of
interest and, moreover, the list may not be sorted so that the scores reflect the actual
interest and number and length of relevant shots contained in the videos.

Indeed, Wikipedia, Google Images, Flickr, among others, are strong candidates to
be source of data to link text with images. Such databases are coarse and diverse
due to their public domain. As an example, Wikipedia is a free and open on-line
encyclopedia which in its English version contains 5.8 millions of articles in 2019.
The documents are created and maintained through the collaborative effort of a
community of users [197]. However, the documents in these databases may not be
reliable.

The documents do not include references to make the authors publicly accountable
for the contributions they did to the corresponding articles. Moreover, any user
can edit any article independently of his/her expertise. In some categories of the
encyclopedia, the subjectivity in the item descriptions (images, tables, etc.) turns
data selection, to ensemble a dataset, into a very complex task. Such task requires
clever file filters to avoid the noisiness of the documents and their sections, to finally
construct a correctly annotated dataset of images and text suitable to train machine
learning classifiers.

1.2 Problem definition

In this thesis we address the problem of retrieving videos that are relevant with
respect to an object of interest specified by the user. The query consists in a textual
identification of the object (name or short description) and a set of images that
potentially contain different views of the same object. The use case of our pipeline is
intended to be real-life applications, which implies that latency is a major constraint
with low tolerance.
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1.3 Proposed method

In our proposed method, we are not interested in indexing a large corpus of videos
because, at least for us, it is not realistic to index all video content. Instead, we
relay on the short-list retrieved by text-based search engines and massive storage
capabilities of video sharing web sites e.g. YouTube. The text search allows to
retrieve documents with low reliability due to noisy labelling or annotation done
by the contributors to the corpus. An efficient visual content-based matching is
applied to verify and re-rank the initial short-list. This document focuses on the
object model building from a set of images and on efficient on-line detection of the
object in videos. The method is summarized in Fig. 1.1.

Our work proposes to access the visual content of the videos to improve the
quality of the text-based search, avoiding the subjectivity and noisiness of textual
human annotations. The proposed approach works on top of the list of retrieved
files returned by the video search engine of the video sharing web page. There is a
additional scoring step of the videos with a relevance metric that allows to re-rank
the videos in the list. The relevance assessment involves an efficient detection of
the query object specified by the user. The applicability of the proposed method
ranges from individual user searches for relevant videos to systematic augmentation
of Wikipedia (or similar) pages with relevant video documents. This proposal relies
on the massive storage facilities of third-party video servers, it does not require to
download, process and store all publicly available videos.
The processing of the images and videos in our approach is done on the fly. There is
no allocation of preprocessed data and/or the videos themselves, since the demand
of storage capabilities becomes intractable very fast. Our approach relies on the
infrastructure of big multimedia sharing companies to deal and support with this
kind of issues.

The thesis provides complete pipeline for content-based video re-ranking multiple
components with independent tasks and specific performance constrains - speed,
memory footprint, and complexity, for example. In addition, we deal with the fact
that processing must be done on the fly, due to limitations on storing preprocessed
data. These factors lead us to use and propose efficient algorithms with optimized
implementations in the multiple components of the pipeline.

The method was implemented, weaknesses were identified and addressed. The
core contribution - Saddle - has impact on various problems in computer vision [74,
104, 213, 175, 37], by far exceeding the video re-ranking task.

Visual representation of the query requires images used as visual description of
the search object to be related semantically by textual information. This assumption
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Figure 1.1: Block diagram of the workflow of our approach for relevant shot detection
and video re-ranking based on visual content. The left column shows the construction
of the visual models and the right column shows the modules related to the video
processing, relevant shot detection and content-based video re-ranking. Our approach
uses Landmarkdb and YouTube as image and video sources, respectively, marked with
red rounded rectangles.

allows us to select a subset of images from a large collection to set up a model or
query. The text linked with the selected images indicates that they potentially depict
the object, building or scene of interest, i.e. the query of our search. Even though
some stages of the pipeline check the actual content of the images before including
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them in the model construction step, it is important that the textual information has
some degree of confidence in order to not run expensive and unnecessary checks on
images that are out of the context, i.e. there is no relation with the object of interest.
The desirable scenario is that all pictures in the selected set are linked to the name of
the landmark shown in them.

Landmarkdb dataset [72] is image source for the visual models. The dataset was
collected from public domain sites for knowledge contributors by means of a concise
entity definition, presented as a list of constrains, for document classification. A
broader description and details about the Landmarkdb dataset is presented in Sec. 4.2.
Once the text-image dataset is collected, our proposed solution performs a text search
of the query string to obtain a set of images presumable depicting the corresponding
object or landmarks. Later local image features are extracted from the image set
and post-processed to efficiently search the model along the video sequences. The
final result of the approach is the initial list of videos is sorted with respect to the
relevance of the videos.

1.4 Evaluation

In order to measure the performance of video re-ranking with a scoring strategy by
relevance assessment, we require an ad hoc fully annotated dataset with images and
videos of specific objects of interest. Currently there is no publicly available dataset
to benchmark searching algorithms for specific object. Some popular datasets are
designed to test categorical classification/detection of objects or activities [85, 142].
As a contribution of this work we present our Specific Object Search (SOS) database
that, to the best of our knowledge, is the first one with textual labels, images
and videos of specific objects. Fig. 1.2 shows four objects included in the SOS
benchmark.
The dataset contains frame-based annotations and a set of images with multiple
views of the object. The data collected corresponds to 10 specific objects among
building landmarks, art paintings, architectonic monuments, etc. Additionally, there
are confuser videos retrieved querying the same identifier string to the video server
but they do not contain the object in none of the frames. For more details about SOS
dataset see Sec. 4.9.1. Fig 1.3 presents a few keyframes from two videos of the SOS
benchmark. The text-based search engine of YouTube retrieves both videos with
query Notre Dame, however, the distractor does not contain the query in any frame.

To test specifically the performance of the new proposed feature detector, we
evaluate on standard benchmarks listed in Tab. 3.1.
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Notre Dame Mona Lisa Starbucks logo Petra Jordan

Figure 1.2: Examples of objects included in the Specific Object Search benchmark.
The names of the objects/queries are at the bottom of each image.

Relevant

Distractor

Figure 1.3: Examples of relevant and distractor videos from the Specific Object Search
benchmark for the query Notre Dame. Both videos are retrieved by YouTube with the
same textual query. The distractor does not depict the query even it is relevant with
respect to text-based search. Only a few keyframes are shown.

1.5 Publications

The list of publications produced during the PhD project, the directly related to the
dissertation topic and additional ones, are listed below:

1.5.1 Publications related to the dissertation topic

. “Saddle: Fast and repeatable features with good coverage”. Javier Aldana-
Iuit, Dmytro Mishkin, Ondrej Chum and Jiri Matas. Image and Vision Comput-
ing (IMAVIS), Elsevier journal. Accepted date: 20.08.2019.. “In the Saddle: Chasing Fast and Repeatable Features”. Javier Aldana-Iuit,
Dmytro Mishkin, Ondrej Chum and Jiri Matas. Proc. 23rd International
Conference on Pattern Recognition (ICPR). 2016.. “Relevance Assessment for Visual Video Re-Ranking”. Javier Aldana-Iuit,
Ondrej Chum and Jiri Matas. Proc. 11th International Conference On Image
Analysis and Recognition (ICIAR). 2014.. “Wide-baseline Stereo Matching for object detection on videos” Javier Aldana-
Iuit. Proc. International Student Conference on Electrical Engineering (POSTER).
2014. Best poster and presentation award.
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1.5.2 Other publications

. “MaxNet: Neural network architecture for continuous detection of mali-
cious activity”. Gronát, Javier Aldana-Iuit and Martin Bálek. Proc. 40th
IEEE Symposium on Security and Privacy. 2019.

1.6 Thesis contributions

In particular, the main contributions of this thesis are as follows:

Re-ranking approach to improve retrieval of video sharing websites We present
a scoring approach to rank full videos by relevance with respect to a query.
A given query is encoded with visual information that actually improves the
results of retrieval compared to full-text search based methods. Currently,
video search in video sharing websites is based on full-text search with high
number of false positives caused by poor quality in the textual annotation.
Even that video retrieval approaches index databases with robust and compact
spatiotemporal descriptors the processing is slow and requires preprocessing
steps prohibited for real-time applications. Our proposal is an in-line approach
free of precomputation.

We present a modular architecture of the relevant assessment for video re-
ranking, that provides flexibility and enables with a set of state of the art
detectors and descriptors for local image regions. Performance metrics like
speed, precision and recall are dependent on the setting of the matcher and the
query modeling approach. This architecture is convenient for scalability since
additional modules can be added to improve the performance without adapting
or modifying the whole pipeline.

We introduce a web-interface that provides an on-line service for querying the
YouTube text-based search engine and boosts the results by our visual relevant
assessment. The system is provided with a video player, ranked list of the
retrieved videos with respect to the visual content, time markers located at
relevant shots, and metadata of the search performed by the video server. The
time stamps allow fast access to shots that contains similar frames that are
encoded in the query model. This is the first web service allowing fast access
to shot under the specification of the target object (query).

To the best of our knowledge, this is the first relevant shot detection approach for
fast specific object detection and visual content-based video re-ranking. Even
though similar approaches are reported in the literature for automatic creation of
dataset for video activity classification dataset, this is the first attempt to detect
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relevant shots to increase the accuracy of retrieval engines that are not aware of
the visual content of the documents, i.e. videos. In addition, the Saddle detector
not only speeds up the feature detection step of our pipeline, it also works
well in medical images, specifically in retinal images [155, 31], and it gets
state-of-the-art results for street level view video sequences for autonomous
driving vehicles [67]. For more details see Section 2.5. More details about this
contributions are in Cha. 4.

A state of the art feature detector in multiple vision tasks The evaluation of our
video re-ranking by relevance assessment reveals the bottleneck of the process-
ing pipeline is the keypoints detection in images (also video frames). In order
to speed up the detection without hurting the performance of the system, we
propose the Saddle detector which is ranked with the best performance in a
stability evaluation of interest point detectors on a street-level view dataset [67].
In addition, the experiments presented in this thesis show that Saddle has signif-
icantly better repeatability, precision in location, coverage that despicable faster
detectors, comparable or even better performance than more complex detectors
including learned approaches.

In the literature are some reports of authors finding applications where Saddle
performs better than traditional or standard methods. The domain of medi-
cal images is not explore with enough extent in this thesis, nevertheless, in
Section 2.5 we present publications about Saddle used in retinal images. In
the same section, we introduce a publication concerning a challenging dataset
proposed to compare vision systems for autonomous driving vehicles. Saddle
poses the state of the art performance for given task. More details about our
feature detector are in Cha. 3.

A multimedia dataset for specific object search The evaluation of the re-ranking
approach requires a dataset with specific characteristics like images and videos
for object specific queries with fully annotated frames. Such dataset was not
available publicly therefore we designed and collected a novel benchmark for
specific object detection with a challenging multimedia dataset with images
and videos of 10 objects that go from brand logos to landmark buildings, with
manually annotated labels. The dataset can be used in different computer vision
tasks like wide-baseline stereo, feature learning, shot boundary detection, etc.
The dataset is called Specific Object Search (SOS) benchmark. Sec. 4.9.1
presents a detailed description of the benchmark.

Shot boundary detector by wide-baseline stereo We present a video shot bound-
ary detector which similarity metric is the number of correctly match pairs
of features by wide baseline stereo matching. Detection of the boundaries is
defined as a search problem with two phases, first, the forward phase finds
shot discontinuities with a line search algorithm (typically used in optimiza-
tion problems), and second, the backwards phase refines the estimate of the
forward stage with a more accurate location in time of the boundary by binary
search. Previous similar methods search exhaustively without optimizations
approaches to increase the efficiency. Sec. 4.7 presents more details about our

8



..................................... 1.7. Authorship

shot boundary detector.

A performance metric for spatial coverage of local features We present a novel
metric for testing the coverage of local image feature detectors in the image.
The metric is up to the number of invariants computed by the detector, i.e. it can
be calculated with different geometries from similar to affine covariant features.
The homogeneously spatial distribution is a desirable property for points used
in 3D reconstruction and SLAM systems. Good coverage is a desirable feature
of the detector in multiple vision task and this thesis introduces the first metric
to measure it. See Sec. 3.3.2.

A novel matching strategy for binary descriptors We introduced a novel strat-
egy for computing point in correspondence using binary descriptors. The main
inspiration is taken from the strategy called First Geometric Inconsistent [133]
for image matching with view synthesis with floating point descriptors. The
experiments show that our strategy out performs the standard methods based on
hard thresholding distance. This contribution is described in detail in Sec. 3.3.6.

1.7 Authorship

I hereby certify that the results presented in this thesis were achieved during my own
research, in cooperation with my thesis advisor Jiři Matas and my specialist advisor
Ondřej Chum, published in [7, 6, 4, 3], with Dmytro Mishkin, published in [7, 6],
and with Petr Gronát and Martin Bálek, published in [56].

1.8 Structure of the Thesis

This thesis is organized as follows.

Chapter 2 presents an overview of the state of the art regarding topics that are
involved in this dissertation. More precisely, the approach proposed in this thesis
requires a wide range of methods and algorithms for different stages of the pipeline,
therefore we present the methods that have the best performance reported in the
literature. The literature review includes the following topics local image feature
detectors and descriptors, methods for image registration, shot detection, image
retrieval, video representation and classification, among others. All these topics are
tightly related to our approach in specific modules of the processing workflow.
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1. Introduction .....................................
Chapter 3 introduces one of our main contributions to the state of the art, the

Saddle detector. Saddle is a similarity covariant feature detector proposed as a
fast approximation of the Hessian detector for points located where the Hessian
of the image has negative determinant. An extensive set of experiments shows the
properties, capabilities, and limitations of the detector. The performance of Saddle
is demonstrated in multiple real applications in computer vision. The detector gets a
significant speed-up of the process and it shows to have general applicability.

Chapter 4 introduces our method for solving the relevant shot detection and
content-based video re-ranking problems, defined in Sec. 1.2. This chapter describes
in details all the modules of our pipeline for improving the full-text search engine of
a video sharing website by means of incorporating visual information in the query.
The full set of modules comprises video acquisition from the video server, decoding
and accessing to the keyframe classification, extraction and description of the local
features detected. In addition, this chapter introduces 1) the workflow to build the
query model, 2) the indexing of the images database to enable full-text search, 3) the
implementation of our image retrieval engine with global deep features to suppress
outliers from the set of relevant images, 4) the matching strategy between model and
video, and 5) the metric for grading the relevance of the shots.

Chapter 5 concludes the thesis and outlines future work on the subject of video
re-ranking and relevant assessment in video shots as well as on our Saddle feature
detector.
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Chapter 2

State of the art

Let us review the existing work related to the topic of this thesis in the fields of
relevant shot detection, video classification, object recognition and local feature
detectors. First, we provide some context via the overview of the structure of the
chapter in the sake of clarity and justifying the content since the number of related
fields is high.

The elementary units used to represent an image or a decoded video frame in our
framework are the keypoints or interest local regions detectable in them, therefore in
Section 2.1 we present an overview of some state-of-the-art feature detectors that
are suitable for our applications. The performance of the relevant assessment is
highly dependent on the selected detector due to some of them relay on complex
and expensive numerical processes to improve the precision in locations and scale
selection, or additional steps to increase the number of geometric invariants covered
in the normalization of the image patch for description. As a follow-up of the detec-
tion, we discuss in Section 2.2 some descriptors used in different tasks in computer
vision. This is another important factor that reverberates in the global performance
of our pipeline, thus this step requires a careful selection of the algorithm, in the
case of hand-crafted descriptors, or architectures and training strategies, in case of
the learned descriptors. Since our method for identifying the object in the images is
based on matching local features, we present possible variants of the image matching
task in Section 2.3 where we also define the problem of image registration for differ-
ent camera configurations. Later, in Section 2.4 we introduce the related work to our
framework for selecting shots in video, the methods are previously reported and are
references to show our contributions to the state-of-the-art in this area. Finally, in
Section 2.5 we discuss some publications that are relevant to our proposed Saddle
detector where the authors show additional domains for the detector to out performed
standard and state-of-the-art approaches.
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2. State of the art....................................
2.1 Keypoint detection

The task is to find sub-regions or local regions in the image that are useful for
posterior stages of the processing pipeline. This regions are the primitives used by
plenty approaches in computer vision such as object recognition, image registration,
3D reconstruction, etc.
This regions must have different appearance from surrounding (close) regions and
allow robust detection under different nuisance factors. In the literature we can find
multiple names for these entities, for instance, local image regions, local feature,
interest points, keypoints, covariant regions, among others.

Another selectivity criterion of the point is repeatability, namely, the points must
be detected in different images with viewpoint changes for the same scene, i.e. they
must cover the same physical surface of the scene. A good interest point must be
distinguishable at least from its immediate regions, i.e. the image patch (group of
pixels in a section of the image) centered in the interest point must be dissimilar to
neighboring patches [59].

The location of interest regions in the image coordinate frame corresponds to
the location of the local maxima of hand-crafted functions that measure the dis-
tinctiveness of local regions related to a specific morphology in the 2D intensity
space [59, 178, 170, 106]. Some morphologies have statistical and geometric prop-
erties that prove they are good regions to be selected as features for a given vision
task. Examples of such regions are corners, blobs, ridges, ellipses and intensity
saddle points. An overview of state-of-the-art feature detectors (hand-crafted and
learned ones) is presented in Section 2.1. Fig. 2.1 shows some interest regions posed
at local maxima and minima of the determinant of the Hessian (Eq. 2.1) with the
elliptical shapes approximated by the Baumberg [17] iteration. These examples are
intended to give a visualization of these entities that are distributed in the images and
therefore used to represent it. The two images shown in Fig. 2.1 belong to a standard
dataset [120] used for benchmarking image registration approaches. Fig. 2.1(a) is
a target image to be matched with the reference one shown in Fig. 2.1(b). Both
images are related by a geometric transformation that models the perspective change.
The colored ellipses indicate some detected keypoints that are set in correspondence
along the pair of views, that is to say, pair of points in the images that correspond
to the same 3D point in the scene. The change in the viewpoint is modeled as an
homography which is used to project the regions on the reference image into the co-
ordinate frame of the target image and compute the accuracy of the detection by the
average reprojection error (see Eq. 3.2). The close overlap of the shapes shows that
the appearance of the regions changes with respect to the transformation, i.e. they
are covariant with change of perspective. Due to the affine transformations being
first order Taylor approximations of the homography at given points [35], locally
the transformations are modeled with an affinity and the elliptical local regions are
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..................................2.1. Keypoint detection

(a) (b) (c)

Figure 2.1: Local covariant features detected in two images of the graffiti sequence
in the OxAff dataset[121, 120]. (a) is the target image with the shapes of some interest
points in green and (b) is the reference image with local features in yellow. The image
pair is related by a geometric transformation that modify the appearance of the local
regions. In (c) the regions of the reference images are projected into the target image
showing the tight overlap between shapes and the local affine covariant behavior with
respect to the viewpoint change.

called affine covariant regions or local affine frames.

H ' H(x, σD) =
[
h11 h12
h21 h22

]
=
[
Ixx(x, σD) Ixy(x, σD)
Ixy(x, σD) Iyy(x, σD)

]
(2.1)

Once the distinctive points of the image are selected/detected, the neighboring
pixels (known as patches) that surround the points are used to compute a signature or
descriptor of the region. The descriptors are high-dimensional vectors that allow to
recognize the same 3D point projected into another image by comparing descriptors
in the Euclidean space. The approaches to compute the descriptors are very diverse
nowadays (see Section 2.2 for a more detailed overview), from binary descriptors
based on pair-wise questions over intensity pixels or patches [29, 98], minimizing ob-
jective functions to find embeddings that maximize the similarity between matching
patches while minimize it for pairs of non-matching descriptors [189], tuning kernel
descriptors [22, 139], deep convolutional neural network architectures [127, 184]
and generative adversarial networks [214] to learn compact but discriminative repre-
sentations either floating-point or binary. Overall, finding a high number of similar
regions is a strong indicator that the object of interest appears in the image under
test, assuming that we have a precomputed database of described regions belonging
to the query.
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2. State of the art....................................
2.1.1 Hand-crafted detectors

The traditional interest points detectors rely on hand-crafted features, i.e. discrete
version of analytic functions with the intensity of the pixels as domain. Given
function by construction has local maxima or fires in the location of desired structures
captured in the image, as an example, one of the most popular feature detector
is the Harris detector [59] which finds locations where the local autocorrelation
function is changing in all directions. These regions correspond to corners and edges
where the corner response is locally maximum. The corner response is defined as
R(x, y) = det(C)− α trace2(C) where C is the auto-correlation matrix based on
the first directional derivative. Structures like blobs or saddle points correspond to
local maxima and minima of the Hessian response [19], respectively. Therefore, the
Hessian detector’s response (as the name suggest) is the determinant of the Hessian
matrix [121], shown in Eq. 2.1, its extrema are regions that have strong derivatives
in two orthogonal directions. Again the position of the keypoints is refined by a
non-maxima suppression step. The baseline version of the Harris and Hessian feature
detectors work well for stereo matching and visual object tracking, since objects
appears in the same size. Nevertheless, the size of the regions must be taken into
account when the viewpoint changes. Objects, and consequently local regions, have
different size, maybe caused by a zoom in or zoom out in the camera or because the
image were digitally resized. The local effect caused by perspective changes will be
discussed later.

Several local feature detector extend its capabilities to be scale invariant by means
of the scale-space analysis [102]. Basically, the feature detectors are applied to
multiple versions (scales) of the same image. The original image is blurred with a
Gaussian kernel convolution, of gradually increased standard deviation, and down
scaled allowing the detector to focus on small details (high resolution) and large
structures (low resolution). For a single keypoint, the characteristic scale selection
mechanism [103] consists in detecting the local maxima of the feature responses
overs scales.

The Harris-Laplace and Hessian-Laplace detectors [117] are scale aware versions,
i.e. the scale selection is performed applying the Laplace operator in the potential
points selected by the baseline detectors along the multiple scales. The local maxima
across the scales indicates the size of the features corresponding to the standard
deviation of the Gaussian used for blurring.

The perspective changes caused by the camera pose is normalized by estimating
the covariant shape of the interest points. For the purpose of normalized local
regions and get affine invariant descriptors, some detectors have an additional step
for estimating the elliptical affine shape of the region [105]. This step is know as
the Baumberg iteration [17] which measures the affine shape of the region with
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..................................2.1. Keypoint detection

the eigenvalues of the second moment matrix of the image. Basically, the task is
to find a linear transformation that projects the affine pattern into a another sub-
image where the eigenvalues are equal, such transformation is the square root of the
second moment matrix M1/2. Harris-Affine [118] and Hessian-Affine [121, 124]
are examples of this affine covariant detectors.

Other approaches to detect corners use sliding windows techniques [177], pixels
laying inside a given circular mask with fixed radius are classified as similar or not
to the pixel located at the center of the mask. Similar pixels have brightness close
to the central one up to a threshold, therefore the relative area of similar pixels is
computed and compared to the geometric threshold, typically set to 3

4N where N is
the number of pixels in the image patch. This approach is slow since all pixels in the
patch are compared against the central one.

One of the most popular method reported in the literature is SIFT (Scale Invariant
Feature Transform) [106, 107]. SIFT is presented as an integral solution for object
recognition and image matching providing a keypoint detector and a powerful
descriptor robust against partial occlusions, rotations, scale and intensity changes,
and shows good performance against moderate affine transformations [120]. See
Sec. 2.2.1 for more details about this descriptor.
The detection step of SIFT finds local extrema of the Difference-of-Gaussian (DoG)
as the response function in a 3D space-scale structure, efficiently computed as an
image pyramid [107]. The DoG function D(x, y, σ) can be computed subtracting
two adjacent (nearby) scales which are separated by a factor k as shown in Eq. 2.2,

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (2.2)

= L(x, y, kσ)− L(x, y, σ), (2.3)

where L(x, y, σ) is the image smoothed by a Gaussian kernel G(x, y, σ) with stan-
dard deviation σ.

Finally, a region is classified as interest point if the 3D point ([x, y, σ]T ) is a
local maximum or minimum with respect to its 26-connected neighborhood. Like-
wise others detectors described before, the scale selection is refined by computing
the Laplacian response along the σ dimension [27] and introducing sub-pixel and
sub-scale precision by quadratic curve fitting. Some interest points are rejected
from the final feature set based on response (DoG) and corneress (Harris) threshold-
ing, dropping homogeneous regions and edges which are affected by the aperture
problem [113].

All feature detectors presented so far are too slow for real-time applications due to
their computational complexity, from building the image pyramids to non-maximal
suppression and sub-pixel precision accuracy refinement. The limitation in the
use case assumes that no GPU or distributed processing system is available. The
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2. State of the art....................................
later was the motivation for approximated method with efficient implementations
that allows reaching real-time (> 30 fps) processing. One of the most relevant
alternatives to SIFT is the well known SURF (Speeded Up Robust Features) [18]
detector which uses and approximation of the Hessian-Laplace detector by box filters
of the second-order partial derivative required to compute the Hessian response with
Ixx, Iyy and Ixy (see Eq. 2.1). The significant speed up arises by using integral
images to compute the box filters efficiently and using the same response for scale
selection, as proposed in [193], for fast object detection with feature boosting.

Another example of very fast detectors is the FAST (Features from Accelerated
Segment Test) corner detector [159, 160] as a simplified version of SUSAN [178].
At a given pixel p, a test is performed to regard the potential corner as a feature
point. The intensity of pixels q laying in the discrete circle of radius 3 (16 positions)
with center at p are compared with the intensity I(p). Pixels qi are classified as
brighter, darker or similar to p (up to a threshold). The point is considered a corner
if a segment/arc of at least 12 pixels has the same label, such label must be brighter
or darker. An efficient implementation of the test allows early dropping the point
without exhaustive comparison of all pixels, given the shape of the pattern only 4
positions (top, bottom, left and right) need to be dissimilar to the center otherwise
the test fails and there is no corner. In case the first condition is satisfied, the test
continues with further comparisons using a decision tree leading to a very fast release
of features. In the baseline implementation of FAST detector, there is no multi-scale
detection and no non-maximal suppression step. A significant improvement of
FAST is called AGAST (Adaptive and Generic Accelerated Segment Test) [110]
that includes space-scale analysis and a more efficient decision tree that actually
combines two trees by switching between them, adapting itself to the environment
without training. These trees use two more classes (not brighter and not lighter)
in the pixel classification. Additionally, 3D non-maximal suppression across the
image pyramid and sub-pixel and sub-scale precision refinement is performed. This
improvements over the scale selection is also used to build on top of AGAST detector
in order to build a fast feature descriptor called BRISK [96].

One of the most used integral approaches for fast detecting and describing local
features for mobile applications, where computing resources are constrained, is
ORB [163]. It is composed of two main components: oFAST and rBRIEF. The first
one stands for oriented FAST that computes the orientation of the feature point as
the intensity centroid of the neighborhood of p using the moments of the image
patch [158]. The pattern of binary comparisons used by BRIEF [29] descriptor is
aligned according to the feature orientation to be rotation invariant. In addition, the
descriptor is improved by reducing the correlation between the descriptor dimensions
by selecting the binary tests from the most balanced features and aggregating the less
correlated ones building the binary descriptor. ORB belongs to a class of similarity
covariant features since it is normalized for rotation and scale. In the following
paragraphs, the most relevant detectors which model the affine covariant behavior of
local regions during detection are briefly described.
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Local affine covariant regions can be detected under some assumptions, like the
EBR (Edge Based Regions) detector [46] does on intersecting edges in the image. It
assumes that a parallelogram can be defined with a corner point (detected by Harris)
and the two closest edges. The two adjacent sides have as common vertex the corner
point and their lengths are estimated by an optimization task, where the objective
function is defined over the image region comprehended by such parallelogram.
The function is the distance ratio of line segments defined between the corners and
the gravity center weighted with the pixel intensities. Such distance ratio between
intersecting lines is a geometric affine invariant. To this end, a function is evaluated
over the parallelogram region that reaches its extrema for corresponding values of
the affine invariant parameters of the edges. The region for which such function
reaches a local extremum is selected.
A more general approach to get local coordinate frames in distinguishable regions,
based on the affine invariants, is presented in [144]. The regions are extracted by
the feature detector called MSER (Maximally Stable Extremal Regions) [111] very
robust against illumination and perspective changes. Stable regions are detected by
consecutive thresholding the image by all possible thresholds in the intensity dynamic
range. Keeping a record of the connected components obtained after binarization.
The components whose areas are the most stable across the multiple thresholds are
selected as keypoints that are covariant with continuous deformations of the image.
Since the whole intensity range is used for thresholding, the MSERs are invariant
to affine transformation of pixel intensities and their computation is suitable for
real-time application because the pixels are sorted and the list of components and
areas is maintained with the efficient union-find algorithm [169].

2.1.2 Learned detectors

In previous section, we went through a significant set of local feature detectors which
by construction fires in certain regions that fulfill some conditions, for instance, the
region is located in a local extrema of a response function. For this section, we
will explore a set of keypoint detectors based on high-dimensional regressors. Such
regressors are trained minimizing customized objective functions that enforced some
features to be improved in the local region selection, i.e. maximize the repeatability
or accuracy in the spatial location. Some approaches use machine learning techniques
to improve a specific aspect of the feature extraction task and others are end-to-end
learned architectures.
TILDE (Temporally Invariant Learned DEtector) [191] is an approach to detect
keypoints with high repeatability under extreme illumination changes which cause
performance drops in hand-engineered detectors. TILDE is train to be robust against
lighting conditions changes from day to night, weather and moreover across seasons
of the year. AMOS dataset [71] is convenient for this task since consists of 540
static cameras across the United States. The dataset has more than 17 millions of
images with surface orientation, weather and seasonal changes. The regressor is
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2. State of the art....................................
trained with positive samples which are SIFT (multi-scale DoG) features detected
independently in each image of a given camera. The patches centered in the most
persistent points (detections in barely the same location across the image stack) are
selected as positive samples and patches for negative samples are located far away
from the interest regions used as positive samples. The regressor is trained to return
a score value for every patch in the image as map in order to extract features by a
simple non-maximal suppression step. The regressor used by TILDE is a piece-wise
linear regressor expressed in the form of Eq. 2.4 which is the representation of linear
function using [171]. The Generalized Hinging Hyperplanes for classification has
the form:

F(x;ω) =
N∑
n=1

δn
Mmax
m=1

w>nmx, (2.4)

where x is the deep feature representation of a given image patch and ω is the
parameter set (weights) of the regressor defined in Eq. 2.5.

ω = [w>11, ...,w>MN , δ1, ..., δN ]> (2.5)

Finally, the objective is formulated to integrate three constrains: The classification
term which enforces the separation between positive and negative samples (max-
margin loss [40]), a pick shape regularizer term that enforce the response to have
local maxima at the positive sample location and low values for the negative ones,
and finally a regularization term of the response over time, i.e. to enforce the
repeatability of the detector by getting similar responses along the image stack. The
resulting detector outperforms the state-of-the-art on different datasets.

Some specific parts of the local feature extraction pipeline are improved by deep
CNNs, for instance, the estimation of the canonical orientation used to normalized
the patches before the descriptor extraction is supervised learned in [208] using a
Siamese network [25, 211, 172] instead of the standard dominant orientation of the
gradient approach as in SIFT. The assignment of the orientation is proposed as an
optimization task minimizing the distance between descriptors, then the orientation
is defined as an implicit variable that is learned by the regressor during training. The
objective function has the following form

L(pi) = ||g(p1
i , fW(p1

i ))− g(p2
i , fW(p2

i ))||22, (2.6)

where pi is a pair of points in two different images of the same 3D point in the
scene, fW is the orientation assigned by the regressor tunned with the parameters
W and g(p, θ) is the descriptor (used as a black-box) of the local region rotated by
θ. Basically, the loss function is the square Euclidean distance of the descriptions
of rotated version of the patches where the orientation is inferred by the network.
A remarkable advantage of this approach is the flexibility as it is possible to use
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the CNN as robust orientation estimator and reach rotation invariance with others
descriptors.

In order to learn feature detectors without supervision, the detection task can
be defined as a regression problem. In [94], the authors introduce the covariance
constraint which allows to detect repeatable keypoints under drastic imaging changes
in the images.

Instead of using annotated samples as training data, the covariance itself is used
as the objective function. In a simplified case for pure translation and corner points,
the covariance constraint is defined as ψ(Tx) = T + ψ(x), where x is an image
patch, T ∈ R2 is the translation vector and ψ : x 7→ f is the function to be learn by
the regressor to map the patches to a feature point (f ∈ R2), i.e. the detector itself.
The constrain can be generalized to more complex transformations (similarities and
affinities) and feature shapes, from 2D points to rotated circles or rotated ellipses.
Finally, the objective function to be minimized is presented in Eq. 2.7 where xi
and Ti are pairs of image patches and transformations in the training data and the
optimization is with respect to the parameters of ψ implemented with a deep CNN.

min
ψ

1
n

n∑
i=1
||ψ(Tixi)− ψ(xi)− Ti||2 (2.7)

Once ψ is learned, it is convolved at all image locations, because of overlapping
local regions, the feature location are voted by bilinear interpolation in a 2D grid
and a non-maxima suppression is applied.

An extension of the previous approaches for learning feature detectors is the
Learned Invariant Feature Transform (LIFT) [206], where the feature detector is
learned in supervised manner using a labeled dataset of image patches extracted
after 3D reconstruction using VisualSFM [201] that operates with SIFT features.
The pipeline also comprehends a orientation estimation and description stage as
part of the learning task. The objective function is defined as the hinge embedding
loss of the Euclidean distance between the description vector. Moreover, in the
same manner of concatenating differentiable losses, a full pipeline including the
feature correspondences computation (for wide-baseline stereo matching) is proposed
in [207], where the input data are pairs of 2D points in correspondence.

Many CNN-based local region detectors are trained using pre-annotated images
or patches, however as an effort to build automatically a large dataset of interest
point locations with pseudo-ground truth annotations is presented in [43]. A fully
convolutional CNN keypoint detector is pretrained with an annotated corners dataset
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2. State of the art....................................
of synthetic shapes in the images and used to extract point locations of real im-
ages. The images are warped multiple times by homographies in order to provide
more perspectives and scales from the same scene, sharing the concept of the data
augmentation [147] and similar to the view synthesis for image matching [134].
The approach is known as homographic adaptation and works as a self-supervised
training of the detector boosting its performance with larger repeatability, giving
place to the detector called Superpoint.

The first fully unsupervised training approach for transformation invariant key-
point detector is presented by the Quad-network approach [166]. The regressor (a
deep CNN) learns a pixel ranking functions that must be invariant under a set of
transformation classes. The network is trained with quadruplets of points, i.e. two
pair of corresponding points since the objective is defined as a margin loss between
two negative samples (non-matching pairs) generated from the input quadruple. Fi-
nally, good feature points are located in the extrema locations of the ranking function
computed by a non-extrema suppression. The detector is trained with ground truth
correspondences in RGB images, fully unsupervised correspondences computation
and employing RGBD images obtained 3D scanners. Depth images are employed
in [145] to reach unsupervised learning pipeline for the same task.

2.2 Keypoint descriptors

The problem of description can be summarized as the task of computing an identifier
for an entire image or a local region of it. The identifier is a high dimensional
vector that describes the region to be recognizable even after a set of transformations
(intensity and/or geometric changes, even different imaging devices). The usefulness
of the descriptor depends on the number invariants it has, i.e. illumination, rota-
tion, scale, similarity, affine invariance. In this section we present approaches for
describing local regions (descriptors) that are popular in the task of stereo matching
since it is the core setup of our object detection criterion. The description of a region
can be defined as the function δ shown in Eq. 2.8 which domain is the squared
(2-dimensional) image patch to be described and the codomain is the D-dimensional
descriptor.

δ : X → Y,where X ∈ RN×N , Y ∈ RD (2.8)

In the literature is possible to find a wide range of techniques for description [88,
95] depending on the feature to be captured, i.e. color, texture, shape, etc. Never-
theless, we focused on the most robust descriptors to changes in the extrinsic and

20



.................................2.2. Keypoint descriptors

intrinsic parameters of the camera. Notice that after the CNNs have been shown to
be very powerful regressors, the got a lot of attention in the description field leading
to a wave of approaches based on deep learning, therefore we present in independent
sections the hand-crafted and learned approaches.

2.2.1 Hand-crafted descriptors

The gold standard descriptor was introduced by Lowe in [106] as part of the frame-
work (detection and description) called SIFT. The feature detection approach of SIFT
is described in Section 2.1.1. The description approach aims to achieve robustness to
lighting variations and small positional shifts by encoding the image information in
a localized set of gradient orientation histograms. Some variations of this descriptors
have been proposed. Like RootSIFT [149] which normalizes the standard SIFT
vector Y as follows: L1 normalize Y , apply element-wise square root X to give X ′

then X ′ is L2 normalized which allows us to use the Hellinger kernel to compute the
distance between descriptors.
Some authors propose to reduce the high dimensionality of SIFT (128-D) using pop-
ular techniques like PCA for the descriptor called PCA-SIFT [203]. Its description
procedure can be divided into two steps: projection matrix generating and descriptor
establishing. It makes a new vector of lower dimensionality than a standard one with
the least correlated dimensions in the feature space. Another approach to enrich the
SIFT descriptor is by the concatenation of another descriptor with different features,
for example GSIFT [137] concatenate a 64-D weighted global texture descriptor
to add context information to the original vector. In [136] the authors address the
specific task of comparing images related by an affine transformation with ASIFT.
The principle is similar to the view synthesis for image matching [134] which uses
the affine camera model to create synthetic views from the original image. ASIFT
detects keypoints and describes them from all affine images.

A fast alternative for SIFT is its approximation presented in SURF [18] which
as well is provided with detection and description components. SURF reaches
the rotation invariance by computing its own gradient orientation histograms with
approximations of the Hessian-Laplace responses by using 2D box filters also known
as Haar wavelets. The descriptor is computed in a SIFT-like fashion using the Haar
wavelets feature maps in a 4× 4 grid surrounding the center of the keypoint.

Another descriptor inspired by SIFT is GLOH (Gradient Location and Orienta-
tion Histogram) [120]. It considers more spatial regions (bins) for computing the
histograms of gradients, i.e. it changes the location grid and the number of bins.
The proposed grid has 17 location and 16 orientation bins that gives a vectorized
histogram of 272-dimensions. In order to match the same dimensionality of the
standard SIFT, PCA is applied over the intermediate representation.
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The DAISY [185] is a descriptor that is related to SIFT and GLOH. It is proposed

as a more efficient way to compute the 3-D gradient orientation histograms. Each bin
contains a weighted sum of the norms of the image gradients around its center, where
the weights roughly depend on the distance to the bin center since the contribution
of each pixel is spread over a 2× 2× 2 neighboring bins to avoid boundary effects.
The weighted sums of gradient norms is replaced by convolutions of the original
image with several oriented derivatives of Gaussian filters which provides the same
invariance with faster computation. The descriptor is finally built with the weighted
sum of gradient norms in a radial pattern similar to GLOH but applying Gaussian
kernels instead of triangular ones. This descriptor has a better performance in dense
image matching.

Some vision applications like SLAM [141, 199, 150] work with local features
to recognize images of places previously visited, a mobile robot takes such images
during a traversal. The identification requires fast algorithms for detection and
description, thus a popular solution is to use binary descriptors which are particular
beneficial for speed. BRIEF (Binary Robust Independent Elementary Features) [29]
is a recent feature descriptor that performs simple binary tests between pixels in a
smoothed image patch. Its performance in recognition and matching is similar to
SURF but it is computed in 1/16 of the time. However, the baseline implementation
of BRIEF is not invariant to rotation and scale changes. ORB [164] framework
(presented as a learned approach in Sec. 2.2.2) addresses the similarity invariance to
outperform FAST.

Inside the field of binary descriptors and following the strategy of binary compari-
son of pairs of pixels, FREAK (Fast REtinA Keypoint) [2] is inspired by the human
vision system. In comparison with BRIEF in which pairs of pixels are randomly
selected, FREAK uses the retinal sampling grid which is circular and has higher
density of points near the center of the region. Its robustness and speed are higher
than SURF and BRISK, and under some conditions, comparable to SIFT, however,
it is not faster than BRIEF.

Finally, it is worth to include the BRISK (Binary Robust Invariant Scalable
Keypoints) [97] framework, that provides detector, descriptor and matcher. It is
built on top of FAST [162] applying scale-space analysis in combination with the
assembly of a bit-string descriptor from intensity comparisons. The pattern of
pixel locations for the binary tests is similar to the one used in DAISY while the
main difference is that the Gaussian kernel for smoothing the patch has a standard
deviation proportional to the distance of the pixel to the center. Two sets of binary
comparisons are considered based on the distance between locations. The keypoint
orientation is computed with the farther set and the binary vector is constructed with
the closer set, as a result we have a descriptor of 64 dimensions equivalent to 516
tests.
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None of the previous approaches requires training data for choosing the test or
features to include in the final vector, however, there is a popular field of machine
learning that investigate the description step as an optimization problem, using from
simple regressors to deep CNNs.

2.2.2 Learned descriptors

A common practice for different learned descriptors is to use a dataset of annotated
image patches such as Brown dataset [26] and HPatches [11], for supervised learning.

As a supervised method we find the descriptor of ORB [164] framework. It
consists in BRIEF with orientation normalization. The orientation is computed
by the intensity centroid of the local region where the keypoint is located. ORB
framework describes keypoints detected by FAST. The robustness of baseline BRIEF
descriptor is improved by selecting binary comparisons via a greedy algorithm, that
requires a training dataset of N keypoints. All possible binary comparisons inside
the patch are applied to the training data. Each comparison has a score computed as
the distance from the mean value across the training set to 0.5. The later enforces
high variance in the feature space. The descriptor is constructed with a subset of
comparisons with the highest scores and only the least correlated ones are included
in final vector.

In the supervised approaches, annotated datasets are used. For the same 3D point
in the scene there are multiple normalized image patches of its projections in dif-
ferent images taken with different cameras and poses. Some authors propose to use
discriminative projections to construct binary descriptors, e.g. in D-Brief (Discrimi-
native BRIEF) descriptor. Each projection represents a dimension in the descriptor
which is binarized by thresholding. Both, the projections and the thresholds are
learned with a two steps approach by LDE [26] and sparsity estimation [10].

A more general definition of binary strings inspired by AdaBoost [51] is proposed
in BinBoost [188]. The learning approach improves the robustness and compactness
of the descriptor. Each bit of the string is computed with a boosted binary hash
function, and efficient optimization is performed in such a way that the different hash
functions complement each other enforcing a compact representation of keypoints.
Weak classifiers (learners) are functions which parameters are a rectangular bounding
boxes and a gradient direction. The intuition behind weak classifier is to measure
the relative number of positions inside the bounding box where the direction of the
gradient agrees with the one indicated as input. The selection of the classifiers in
the hash function is driven in a supervised fashion, enforcing equal hash function
outputs in pair of patches correctly matched and different outputs for mismatched
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ones.

In the field of learned descriptors there is a seminal work [200] where the authors
introduce a dataset of match/non-match image patches extracted from a Structure-
from-Motion system (SfM) [179]. The authors created the dataset detecting DoG
keypoints in 1000 images over 3 datasets: Yosemite, Liberty, and Notre Dame. They
used dense surface models obtained via stereo matching to establish correspondences
between real interest points. In order to get the ground truth labelling of the keypoints
they used provided depth maps to transfer a local dense sampling of points that
surrounds the keypoint into a second image and then use least squares to estimate
the expected position, scale and orientation of the projected interest point. In this
same work [200], DAISY test pattern is evaluated for multiple steerable filters of
gradient-based features extractor to find the best configurations that minimize the
matching error.

With the Deep Learning wave in the field of machine learning [42, 182, 174, 181],
the researchers paid attention to approaches intended to learn descriptors based on
CNNs playing with different architectures, objective functions, training strategies,
regularizations, etc. In the sake of simplicity, we focus in a few representative
approaches for learning descriptors using deep architectures. In [211] the addressed
problem is to learn a general similarity function for comparing image patches
without extracting manually-designed features from them as a prior step. The
features are learned as a part of the back-propagation pipeline using a well known
architecture types, i.e. 2-channels [58], siamese [34] and pseudo-siamese [68]. For
all chosen architectures, the input data is a pair of squared images patches of the
same size and the objective functions has a regularization term and minimization of
the classification error term, i.e. the product of the network output and the label of the
patch pair (positive-matching pair, negative-non-matching pair). A similar approach
is proposed for the MatchNet [202] descriptor which uses a siamese fashion where
each branch follows the AlexNet [42] model. The network is trained minimizing the
cross-entropy loss function.

We review a CNN-based descriptor HardNet [128] that we used in some of our
experiments for matching (see Section 3.3). It uses the architecture of L2Net [184]
network. Instead of optimizing 3-term loss function, it mimics the matching strategy
of SIFT where a 1st nearest neighbor match is confirmed by thresholding the distance
ratio of the 1st and 2nd nearest neighbor [106]. The cost function is defined as a
triplet margin loss for a negative mining approach. HardNet descriptor represent
the state-of-the-art for stereo matching task together with an affine normalization
approach introduced in [135].

A local image descriptor called DEep Local Features (DELF) is also based on
CNNs, however, it is trained only with image-level annotations on a landmark image
dataset. The authors propose an attention mechanism to select semantically useful
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local features for image retrieval. DELF framework can be used for image retrieval
replacing other keypoint detector and descriptor. Experiments show DELF increases
the accuracy in feature matching and geometric verification.

2.3 Image matching

This section is focused on the stereo matching task and it presents different ap-
proaches reported in the literature that are relevant to this thesis since image matching
is the core of our object detection approach.

The image matching problem assumes that local regions are covariant between
viewpoint changes. In some cases, the transformation underlying between the two
views is not a pure translation or composed only by translation and rotation. The
change of the camera pose may involves a scale and affine transformation over the
shape of regions in the images.

The problem can be seen as a search problem, where the goal is to find a common
part of a scene captured in two (or more) images with different camera poses.
The geometric relation between views, represented by a linear transformation, is
estimated with certain degree of confidence depending on the size of the common
region and the visual information contained in it e.g. shapes, geometric structures,
texture, etc. The geometric transformation allows to convert the coordinate system
of the first image to the coordinate frame of the second one.

The overview of the image matching task is split into two main branches: The
stereo matching setup and the wide baseline stereo matching. Both branches are
exemplified in the following sections with methods found in the literature.

2.3.1 Stereo matching

For stereo matching [167], the rows of both images are aligned with the projection of
the baseline of the Epipolar geometry setup. Hence, local shapes can be approximated
by a pure translational model. Fig. 2.3 shows images taken with a stereo camera,
viewpoint changes at local region can be modeled as Euclidean isometries. One
approach to build feature correspondences in this setup is based on image patch
correlation. The size of the image patch (window) affects the accuracy of the
dissimilarity estimate [170]. The size of the window can be adjusted driven by the
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Figure 2.2: Example of two images captured with the same camera in different
viewpoints. The image regions depicting a common part of the scene is indicated by
the green bounding boxes. The shape of the left box is covariant to the transformation
underlying in the viewpoint change.

(a) (b) (b)

Figure 2.3: Example of an image stereo matching setup. Images belong to the Tsukuba
sequence of the Middlebury stereo dataset [167]. The left image (a) is matched with the
right image (b) and the ground truth image (c) has as intensity values the normalized
Euclidean distance between corresponding points, also called disparity map.

disparity estimate uncertainty of pixels inside the window [77]. The estimation
approach fits a parametric statistical models with sum of squared differences (SSD)
between patch intensities. Finally, the task is addressed as a minimization problem
where the objective involves the pixel uncertainty as a function of the window size.

The accuracy of the disparity map estimation is compromised by multiple factors,
noise related to imaging devices, the lack of texture in the objects, discontinuities in
the disparity map, and the occlusions. Graphical models [90], like Markov Random
Fields (MRF) [80], have been used in this task. Such models are trained with
algorithms based on Belief Propagation (BP) to address the nuisance factors. In [74],
the authors propose an architecture with three coupled MRFs [74]. The first one
enforces the smoothness of the depth field, the second models the discontinuities
with a spatial line process, and the third models the occlusions with a binary process.
After eliminating the line and binary processes by introducing robust functions, the
Maximum A posteriori Probability (MAP) estimate is performed by Bayesian BP.

The best results of this approach are obtained incorporating hard constrains in the
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object boundaries via an object segmentation-based algorithm [183]. In this kind
of energy minimization tasks, the color information can be introduced to improve
accuracy of depth estimate of the non-occluded pixels [204]. The window size
used to compute the disparity maps is adjusted with respect to the RGB correlation
between pixel and its neighborhood. Such approach shows higher accuracy on both
smooth regions and discontinuities in the disparity maps.

The high correlation of the color in local regions of the image is associated with
the structures in the scene. This information can be used to create larger connected
components (segments) in the image, applying color segmentation, for example.
In [99], the disparity field is estimated in the segment domain and the problem is
defined as an energy minimization. Finally, depth map is approximated by the Graph
Cut algorithm [24].
The BP-based method is improved by using the graph cuts algorithm jointly with
locally shared labels. Since the optimization is performed with sub-modular move-
ments, the optimal labelling at each min-cut is guaranteed, and it allows to initialize
the labelling proposals with a randomized search. As a result, the approach finds
smooth disparity fields in planar localities and gets the highest sub-pixel accuracy.

The principle of cooperative optimizations [52] can be applied on top of the
segmented image, by mean-shift in the color space, to estimate the depth field. The
estimation is performed by an initial local optimization step and followed by a global
optimizations step. The depth consistency in adjacent regions in the map is enforced
by minimizing the energy functional (Ei(x)) by a local optimization method[66] of
the cost function

Ψi(x) = min

(1− λi)Ei(x) + λi
∑
j 6=i

wijEj(x)

 for i, j = 1, ..., N, (2.9)

for the i-th region, where the j-th regions are adjacent to the i-th one, λi ∈ [0, 1],
wij ∈ [0, 1] are the corresponding weights.
A similar approach is proposed in [21], where scene is assumed to be composed
by a set of smooth surfaces approximated by B-splines. The optimization task of a
pixel-wise MRF is performed with the fusion move approach [93].

A CNN-based stereo matching approach is presented in [194]. The architecture is
a siamese network that compares image patches with a learned similarity measure
implemented with a concatenation layer followed by a set of fully connected lay-
ers [194]. In order to speed up the training process, the authors of [109] replace the
concatenation layer and the fully connected layers with single product layer.
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Figure 2.4: Generic pipeline for the wide baseline stereo matching task.

2.3.2 Wide baseline stereo matching

The so called wide baseline stereo matching involves different camera setups com-
pared to the stereo matching (described in Sec. 2.3.1). In Epipolar geometry [61], the
line defined between two camera centers is larger (wider), i.e. the distance between
the viewpoints or positions where the cameras where located, is significant larger
compared to the stereo configuration. The image planes of the two cameras are
not coplanar and the Y-axis of the image coordinate frames are not collinear. In
addition, the images are expected to be zoomed in or out, projective transformed as
an effect of a perspective change in the camera poses. As described in Sec. 2.1.1,
under this camera configuration the local regions in the images are assumed to be
deformed co-variantly by affinity or similarity transformations. The sliding window
approaches are computational expensive and inefficient for this scenario then the
goal is establishing dense correspondences between keypoints located independently
in both images.

A generic pipeline for wide baseline matching was introduced by Lowe [107]
starting from the search of image locations and scales of the interest points, the
patch normalization for description with the corresponding invariants and building
correspondences by nearest neighbor search in the descriptor space (see Fig. 2.4).
The keypoints are detected finding the extrema of the DoG function that can be
computed efficiently subtracting nearby scales in the image pyramid. The precision
improvement of the point location in space and scale is done through a 3D quadratic
function fitting locally at the point location in order to interpolate the response
function [27]. DoG local maxima laying in edges are dropped by thresholding the
ratio between the largest magnitude eigenvalue and the smallest one of the Hessian
matrix (H) computed at the corresponding location and scale of the keypoint under
testing. The ratio of principal curvatures is presented in Eq. 2.10, where α = rβ is
the eigenvalues ratio and α, β are the largest and smallest eigenvalue, respectively.
This feature detector is commonly known as SIFT detector.
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Tr(H)2

Det(H) <
(r + 1)2

r
(2.10)

Before the descriptor computation and as part of the patch normalization process,
there is an additional step required to reach rotation invariance, that is the estimation
of the dominant orientation of the gradient. The mode of the histogram of gradient
orientation is computed with the samples taken from the region around the key-
point. The number of bins is fixed to 36 covering the 360 degree range of possible
orientation and, in case of multi-modes or that others peaks in the histogram with
frequencies higher than 80% of the mode peak, multiple rotated instances of the
same keypoint are included in the feature set.

Description step is performed with the so-called SIFT descriptor [107] and it
is widely used in multiple computer vision tasks, not bounded to image matching.
The descriptor of a keypoint is a 128 dimensional signature consisting in a local
histogram of gradient orientation that allows for small misalignments without hurting
the matching performance. The SIFT descriptor is extracted from the normalized
patch (transformed into a canonical coordinate frame) which is spatially tessellated
with a 4 × 4 lattice rising each of them a histogram of gradient orientation. The
samples are quantized into 8 bins with interpolation where the bins contain the
weighted sum of the gradient magnitudes. This popular descriptor can be interpreted
as a 3D histogram where 2 dimensions are the XY location of the pixel and the
third one is the image gradient orientation, an illustration of the SIFT construction is
shown in Fig. 2.5. The recognition task, presented in [107], proceeds by matching
individual features to a database of features from known objects using a fast nearest-
neighbor algorithm. The geometric verification is performed by a Hough transform
to identify clusters belonging to a single object, and a least-squares solution for
consistent pose parameters estimation.

In [111], the pipeline for robust wide-baseline matching is capable to match more
challenging viewpoints. MSER detector is used as the interest region extractor and
the feature shapes are approximated as ellipses since detections are affine-covariant
regions. After image patch normalization, instead of SIFT that is scale and rotation
invariant, the descriptor is computed with rotational invariants by estimating complex
moments in the color patch [126] leading to the affine invariance. The tentative
correspondences are computed by correlation and outlier suppression by RANSAC
over Epipolar geometry in a two-step fashion. The first epipolar geometry estimate
uses the gravity center of the MSERs, then the subset of consistent tentatives is
pruned again by a correlation thresholding of affine and rotation normalized regions
using the correspondence of covariance matrices and epipolar lines. Afterwards, a
finer Epipolar geometry is estimated by RANSAC with the new correspondence set,
resulting in a higher precision of the geometric model estimate.
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(a) (b) (c) (d)

Figure 2.5: Illustration of the SIFT descriptor computation. A keypoint indicated
with a blue is shown in (a) and (b) is a zoom-in of the point. The 4× 4 tesselation (in
green) used to compute the 16 local histograms of gradient orientations is shown in (c)
together with a 4× 4 pixel region to compute a single histogram (red). The zoom-in
of the histogram with the gradient orientation (arrows) that are quantized to build the
descriptor.

Instead of estimating the geometric relation of the two views by RANSAC with
the full set of tentative correspondences, some authors proposes to do it with ag-
glomeration. In [151], the set of tentatives is split into small clusters of spatial
close points in order to compute local homographies that reproject features from
one image to the other with high accuracy, then the correspondence set is growth by
using RANSAC algorithm iteratively taking as initialization the local homographies.
The tentative matches that are consistent in each iteration are aggregated to the next
RANSAC run. The union of consistent correspondences confirmed by expanding all
local homographies become the final set of inlier matches. A similar approach with
tighter constrains over local regions and the global epipolar relation between images
and introducing a deformation model (caused by under rotation, scale, intensity
and moderate affine transformations by means of a systematic protocol proposed
in [119], where it empirically shows very good performance.

The correspondence keypoint pairs are established by nearest neighbor (NN)
search with a presorting step in order to efficiently search for similar descriptors by
Euclidean distance. Descriptors are stored in a kD-tree structure to relieve the cursed
of dimensionality. Correspondences are filtered by the first to second NN distance
ratio. Distance ratio higher than 0.8 are confirmed to be in distortion) is presented
in [46].

Some approaches extend the capability of the SIFT method to reach affine in-
variance in the local feature extraction. By generating sample views of the initial
images, which simulate changes in the camera orientation (latitude θ and longitude
φ angles), the similarity invariant SIFT can treat the two additional parameters
to effectively cover the six parameters of the affine transformation. The ASIFT
(Affine-SIFT) [136] transforms each image into a set of affine distortions which
simulates all possible camera position changes by a fix set of quantized values for
the θ and φ parameter setting. In Fig. 2.6 two pair of matched images are shown
with the synthetic views computed for each initial image. The matching algorithm
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←

(a) Graffiti

←

(b) Fox

Figure 2.6: Two examples of view synthesis for reliable geometry estimation. The
pair (a) is part of OxAff [119] and (b) belongs to EVD[134]. The original images are
red framed and the surranding ones are their warped versions. The orientation of the
matching task is idicated by←, i.e. the reference images is in the left side and the target
image is on the right. Views were synthetized by MODS[131].

proposed in the baseline version of SIFT is applied to all image pairs created from
the synthetic views and the initial images and the correctly matched features are
normalized into the initial image coordinate frame. In [134], improvements over
the view synthesis approach are presented withing the Matching On Demand with
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view Synthesis algorithm (MODS). Instead of generating all the simulated views
corresponding to a fix set of quantized values of camera motion model, the views
are generated progressively on-demand until a reliable estimation of the geometric
model relating the image pair is obtained. In the same manner, the complexity in
the feature detection step is control by aggregating more computational expensive
detectors.

The first attempt to generalized the wide baseline stereo problem is reported
in [133], as a two-view image matching problem where two or more of the image
formation and acquisition properties significantly change. Types of changes consid-
ered are the illumination, geometry, sensor and appearance. Jointly, a dataset known
as WxBS is provided with pairs of images where one or more type of changes are
present.

Making reference to the last stage of the stereo matching task, the geometric veri-
fication of the tentative correspondences, i.e. outlier suppression, the gold standard
method is RANSAC [50] for robust estimation due to its good performance against
high outlier ratio. One of the main disadvantages is the long time to reach conver-
gence but some approaches like PROSAC [38], LO-RANSAC [36], MLESAC [186]
speed up the estimation. A unified framework of tools for robust estimation is
called USAC [154]. A novel approach of an end-to-end trainable architecture is
presented is introduced in [207]. The input of the architecture is the set of tentative
correspondences and the intrinsic parameter of the camera. The network is intended
to learn the labelling of the correspondences (as inlier or outliers) and using them
for recovering the relative pose of the two views, jointly. For the optimization of the
parameters, a hybrid loss function is proposed over the individual correspondences
and the fundamental matrix estimation. State-of-the-art performance is achieved but
is important to notice that RANSAC is applied as the last step over the set of inlier
correspondences outputted by the network.

2.4 Relevant shot detection

The problem of detecting and classifying video shots into interesting ones for the
user or not have been addressed from multiple perspective, the most representative
ones reported in the literature are described in this section.

From our knowledge the first approach for assessing the content of the video shared
through the Web is reported in [44], where the goal is to construct automatically
a database of video shots labeled by the action captured in them. First, videos
are retrieved by means of the web API querying 100 kinds of actions. In this
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step the videos are ranked scoring the co-occurrence of the tags among all the
retrieved videos [205]. As a preprocessing step, the videos are segmented into
shots and for each shot a set of features of multiple types are extracted to describe
the corresponding video segment. The spatio-temporal features [143] are defined
as triplets of SURF points that are moving along the shot, i.e. a visual object
tracker is applied to classify the points as steady or moving. Local appearance and
motion features are extracted from each triplet leading to a 256-D descriptor. The
second type of feature is the global motion in a frame, Lucas-Kanade [108] tracking
features are extracted at fix 8 pixel rectangular grid and a global histogram of motion
magnitude and direction is built, leading to an additional 15-D descriptor. Finally,
the appearance of the shot is described by Gabor texture features computed locally
with respect to fix grained frame tessellation, giving as a results 400 24-D vectors
from a single frame. A single descriptor is composed from the earlier described ones
and they are vector quantized in order to obtain a bag of feature representation of
the shot. The final assignment of the shots into the action kinds is addressed by the
VisualRank [75] algorithm which requires a distance matrix where ,in this approach,
the similarity metric is histogram (shot descriptor) intersection. This unsupervised
method for ranking the shots achieves a 49% mean precision at rank 100, which
significantly behind the 80% obtained by the supervised approach with MKL feature
fusion proposed by [143].

In a follow-up work [44], the same authors proposed a slightly different approach
that actually increases the precision in 3% with respect to the baseline method. After
video downloading, decomposition into shots and feature extraction, the Ordering
Points To Identify the Clustering Structure(OPTICS) [8] hierarchy clustering method
is applied to vectors computed from a single action query. Inside each cluster the
outliers are filtered out by scoring the descriptors by the isolation with respect to its
surroundings [32] samples.

(a) (b)

Figure 2.7: (a)Time information fusion in CNN architecture called Slow fusion which
input is a subsequence of a video clip and (b) the multi-resolution architecture change
called fovea and context streams to speed up the training of the networks.

In recent publications deep network architectures are used for modeling the time
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dependency between video frames for large-scale video classification. In [78], the
spatiotemporal features are extracted with a novel architecture called slow fusion
which takes an interval of consecutive frames, store them in a single 4-D tensor
as input and convolve it with 11 × 11 × 3 × T filters, where T = 4 in the first
convolutional layer and T = 2 in the second and third layer, the following layer are
similar to ImageNet [87] model. A simplified illustration of the slow fusion topology
is shown in Fig. 2.7(a).

Additionally, in the same work there is a major contribution regarding the speed
of the training, a multi-resolution architecture is proposed to accelerate the training
by reducing the size of the input images without compromising the performance.
The architecture is called Fovea and context streams and it is shown in Fig. 2.7(b),
there are two separate streams of processing over two spatial resolutions. Both
streams are feed with images of half of the size in the original architectures, the
context one received a downsampled frame at half of the original spatial resolution
and the fovea one receives the central region at the original resolution, assuming
that the object of interest appears are most of the time well centered in frame. The
experiments shows that the mixed-resolution architectures is an effective way to
accelerate the network without compromising the accuracy and the temporal features
encoded in the models with 4-D convolutions performs better than the single-frame
models. The 4-D convolutions used to learn spatiotemporal features are also known
as temporal convolutions and open the question "how deep we should go in time to
improve the performance of such models?". In the sake of getting an answer to this
question, a systematic evaluation is presented in [190] with an architecture that has 5
convolutional layer where the 4-D filters are of size 3× 3× 3×K, where K is the
number of input channels, i.e. K = 3 for RGB input and K = 2 for XY -flow input
computed by Brox optical flow method [28]. The input subsequence of T frames is
reshaped into K 3D stacks of the same channel each. Notice that the 4th dimension
of the kernels runs over the channels, in contrast with the slow fusion model where
it runs over the time. The time window is evaluated for T ∈ {20, 40, 60, 80, 100}
giving place to the so called long-term temporal convolutions. The experiments
shows the classification accuracy monotonically increase with larger T and the best
results are obtained by combining (average) the classification scores from the spatial
and temporal networks.

Another popular way to encode the temporal relation between samples is the
use of Long Short-term Memory (LSTM) networks that are employed in Natural
Language Processing (NLP) [54, 33] approaches and time series analysis [100]. The
LSTM cell can be considered as an improved architecture of the Recurrent Neural
Network (RNN) cell [180, 192], which are hard to train with long-term dynamics
(long sequences) due to the problem of vanishing and exploding gradients [64].
LSTM is provided with memory units that allow the network to learn when to forget
previous hidden states and when to update them given new information. A popular
LSTM architecture, that has shown good performance for representing specific type
of programs [212], is shown in Fig. 2.8 where σ(x) = (1 + e−x)−1 is the sigmoid

34



............................... 2.4. Relevant shot detection

Figure 2.8: Diagram of the LSTM cell architecture proposed in [45]

non-linearity, φ(x) = ex−e−x

ex+e−x = 2σ(2x)− 1 is the hyperbolic tangent non-linearity,
the output ht is updated given inputs xt and ht−1.

On the side of activity recognition and video description, LSTM has been incor-
porated to learn and encode the temporal features in conjunction with the powerful
representation of the visual information in the video frames with CNN, giving place
to the Long-term Recurrent Convolutional Networks (LRCN) proposed in [45]. The
frames are transform to a fixed-length vector representation that correspond to the
activations in some layer of a minor variant of AlexNet [86]. The vectors are fed
into a stack of LSTM cells to run the sequential learning. Finally, the inference
consist of estimating at each time-step a prediction distribution applying a softmax
function over the sequential model (LSTM) outputs. LRCN is a class of spatially
and temporally deep architecture that outperforms previous approaches that encode
temporal information with visual information [73].

The usage of CNN architectures with independent streams for video classification
is another approach that has been studied recently. Basically, there is one stream
trained for spatial information and other for the temporal information, independently,
and the inference output is fused in testing time, exclusively. In [173], both streams
are implemented with 2D CNNs (ImageNet [42]), the input of the spatial stream is
the RGB video frames stacked channel-wise and the temporal stream is fed with
dense optical flow, extracted with Brox [28] approach, that represent the temporal
component of the video. A softmax layer is added at the end of both streams and
they are combined by late fusion, i.e. averaging the outputs or training an SVM
classifier with the stacked L2-normalized scores as features, see Fig. 2.9. The
previous approach is improved in [30], substituting the 2D CNNs by 3D ones and
suppressing the high computational cost of the optical flow computation by the
motion vector representations that are precomputed and stored in the compressed
video and can be extracted with the video codec efficiently. In the case of the spatial
stream, the authors propose to use 4-D RGB inputs where the 4th dimension is the
time step. The overhead of the 3D convolutions and the high number of parameters
of the 4D architectures, the frames are not decoded selectively driven by the motion
activity embedded in the codec for decompression.
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Figure 2.9: Two-stream architecture for video classification [173, 30]. The two streams
are trained independently and the maximum scores of the softmax outputs are average
to combine the knowledge encoded in both pipelines.

One of the main goals in this thesis is the automatic detection of interesting parts of
videos and fast access to them without exhaustive passing through the full sequence,
our approach is described in Chapter 4. In the state-of-the-art, the capability to
accesses the interesting parts (subsequences) of a video with respect to the visual
content has been addressed as an activity detection task. In [89], the problem is
defined as Markov decision process where the length of the jump between frames
(fast-forwarding) is learned by a supervised Q-learning method [195], which is
widely used in reinforcement learning tasks in movement planning [20].

2.5 Additional work related to Saddle detector

The Saddle detector is a contribution of this doctoral research project that emerged as
an independent component of the pipeline for relevant shot detection based on visual
content of the videos. As a result, Saddle is used as an alternative for the local feature
detection step of the pipeline meanwhile the rest is preserved in the standard setup,
increasing the frame rate and improving the detection accuracy. The experiments
of Section 3.3 show that its robustness and speed make Saddle a strong competitor
against slightly faster detectors on natural images. On recent publications, the image
domain where Saddle is used is different from the datasets and tasks included in [7].
In [156] the authors proposed a derivative version of our detector known as D-Saddle
which is intended to extract keypoints from Fundus (retinal) [5] images as part of
a registration approach. D-Saddle diverges from the standard Saddle in the scale-
space pyramid which is constructed in the SIFT-like fashion with 4 octaves of 1
level each. The levels are DoG responses approximated by subtracting two blurred
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images with different scales. Finally, keypoints are detected by the standard Saddle
and described by HoG [41]. The experiments show that Saddle handles well the
low-contrasted images and it fires with high density along the blood vessels, even
in the peripheral retina, which is desirable for robust image stitching. A follow up
from the previous work can be found in [31] where D-Saddle is tested for matching
ability with different descriptors again for medical images.

Besides the results obtained with medical images, a recently published com-
parison [67] of keypoints detectors tested in a novel dataset called ApolloScape
revealed that Saddle has the state-of-the-art performance regarding repeatability.
The sequences included in the dataset come from images and videos acquired by
cameras mounted in automobiles/cars navigating along traffic streets from differ-
ent cities, since it is intended to develop vision-based navigation approaches. The
ApolloScape dataset consists in N continuous sequences (single shot without inter-
ruptions) recorded in different routes also known as traversals. The experiments
shows that the repeatability of Saddle is significantly higher in most of the traversals.
As a result, Saddle turns out to be the most suitable feature extractor for the vision
system of autonomous vehicles among recently detectors that use deep CNN features
and still being extracted in a fraction of the time.
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Chapter 3

The Saddle feature detector

One of the main contributions presented in this thesis is our detector called Saddle, a
novel similarity-covariant feature detector that extracts points whose neighborhoods,
when treated as a 3D intensity surface, have a saddle-like intensity profile. The
opportunity window that motivate this proposal is the trade-off between accuracy
in detection and speed for the whole pipeline involved in the object detection on
videos. Our experiments shows that the use of fast approximation of corners as
feature detector hurts significantly the precision and recall of the relevant assessment
while highly precise affine covariant feature detectors are too slow for the real-time
constrains but provide the best recognition performance. As a consequence we
designed robust and fast detector. The saddle condition is verified efficiently by
intensity comparisons on two concentric rings that must have exactly two dark-to-
bright and two bright-to-dark transitions satisfying certain geometric constraints.

This chapter is focused on the Saddle detector, its properties and experiments to
test it performance in a wide range of computer vision tasks. We present a brief
overview of the proposed detector compared to previous works and some use cases
in Section 3.1. We introduce and justify the design of the patterns tested by the
detector in the Section 3.2. In Section 3.3 we present an extensive set of experiments
to show the performance in different scenarios as well as experiments that support
the design decisions on the detector and its parameter setting. Finally, a shallow
discussion of the findings on our detector in Section 3.4.
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3. The Saddle feature detector..............................
3.1 Overview

The detector extracts points whose neighborhoods, when treated as a 3D intensity sur-
face, have concave and convex profiles in a pair of directions close to be orthogonal,
see Fig. 3.1; in a continuous setting the points would have a negative determinant of
the Hessian matrix. The saddle condition is approximately verified on two concentric
approximately circular rings which must have exactly two dark-to-bright and two
bright-to-dark transitions satisfying certain geometric constraints, see Fig. 3.2.

Figure 3.1: Saddle feature examples (left column). Corresponding image patches with
accepted arrangements of dark (marked red), bright (green) and intermediate (blue)
pixel intensities (central column). Pixel intensities around Saddle points visualized as a
3D surface (right column).

Experiments show that such points exist with high density in a broad class of
images, are repeatably detectable, distinctive and are accurately localized. The
Saddle points are stable with respect to scale and thus a coarse pyramid is sufficient
for their detection, saving time and memory. Saddle is faster than SURF, a popular
choice of detector when fast response is required, but slower than ORB. Overall,
the Saddle detector provides an attractive combination of properties sufficient to
have impact even in the mature area of local feature detectors. Saddle-like interest
points (among others) were tested previously in a methodology for scale-selection
and image matching in [104].

Saddle falls into the class of detectors that are defined in terms of intensity
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Figure 3.2: The 8
pixel positions marked
red form the inner ring
and the 16 positions bj

marked blue form the
outer ring. Positions
shared by both rings
are bicolored.

level comparisons, together with BRISK [97], FAST [161], its similarity-covariant
extension ORB [164], and its precursors like SUSAN [178] and the Trajkovic-
Hedley detector [187]. With the exception of BRISK, the intensity-comparison based
detector aim at corner-like features and can be interpreted as a fast approximation
of the Harris interest point1 detector [60]. Saddle is novel as it uses intensity
comparisons for detection of different local structures, related to Hessian rather than
the Harris detector.

Despite recent success of the deep learning based methods, local features methods
are still state-of-art in, in particular, robotic applications like navigation [84] and
place recognition in changing environments [165]. The very recent local feature
competition [12] have shown that while learned descriptors significantly outperform
handcrafted ones, the opposite is true for the local feature detectors. The top-
performing method is based on DoG keypoints. The primary version of this paper
has been published in [6].

(a) (b)

Figure 3.3: (a) The fast test for an alternating-pattern on the inner ring required for
Saddle. In each of the four patterns, green dots depict pixels with intensity strictly
brighter than the intensity of pixels marked red. The location is eliminated if none of
the patterns is observed. (b) Examples of accepted patterns.

A recently proposed evaluation framework [81] for keypoint detector on the
ApolloScape dataset [67] presents a comparison between novel deep-learning based

1In fact, the ORB final interest point selection is a function of the Harris response computed on
points that pass a preliminary test.
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Algorithm 1 Saddle feature detection
Input: Image I , ε
Output: Set F of Saddle keypoints

for pyramid level In do
for every pixel p in In do

if INNER(p) then
Compute ρp
if OUTER(p, ρp, ε) then

Compute response R(p)
Non-Maxima Supression
Coordinate Refinement

return

interest point detectors (LIFT, TILDE, Superpoint and LF-Net) and hand-crafted
keypoints detectors (FAST, ORB, DoG, AGAST, AKASE, BRISK, Saddle) for
repeatability. The Saddle detector has the best average repeatability for all evaluated
traversals (0.177), achieving the highest repeatability in 6 out of 9 traversals. In the
remaining 3 traversals, it is closely behind the best performing detectors. The paper
concludes that Saddle is the best choice for real-live applications of the autonomous
driving type.

3.2 The Saddle Interest Point Detector

The algorithmic structure of the Saddle keypoint detector is simple. Covariance with
similarity transformation is achieved by localizing the keypoints in a scale-space
pyramid [101]. At every level of the pyramid, the Saddle points are extracted in three
steps. First, a fast alternating-pattern test is performed on the inner ring, see Figs. 3.2
and 3.3. This test eliminates about 80–85% of the candidate points. If a point passes
the first test, an alternating pattern test on the outer ring is carried out. Finally, points
that pass both tests enter the post-processing stage, which includes non-maxima
suppression and response strength selection. The algorithm is summarized in Alg. 1.

3.2.1 Alternating-pattern on the inner ring

The first test is designed to be very fast and to reject majority of points. For a given
position p in the image, the test operates with the pixels located at the pink squares
shown in Fig 3.2. In the test, two pairs of orthogonal directions are considered, one
shaped as a + sign and the other shaped as a × symbol. The test is passed if both
points on the inner ring in one direction are strictly brighter than both points in the
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orthogonal direction. The four cases for passing the test are depicted in Fig. 3.3 (a).
Note that either of the + and × shapes can pass the test, or both.

From the intensity values of the pixels of the inner ring satisfying the alternating-
pattern test, either four or eight pixels, depending whether one or both patterns
passed the test, central intensity value ρp is estimated at pixel p. As a robust
estimate, the median of the intensity values is used. The computation of the median
is implemented efficiently using the implicit sorting algorithm of the 4 pixels (per
orientation) on the inner ring in order to test the alternating pattern. Under the
assumption that the swapping inner pattern is fulfilled, one of the two opposite pair
of pixel positions are smaller than the other and vice versa. The median value is
computed efficiently as the intensity average of the highest value of the darker pixels
and the lowest of the brightest pixels.

3.2.2 Alternating-pattern on the outer ring

The second test considers the 16 pixels that approximate a circle of radius 3 around
the central point. The outer ring is depicted in Fig. 3.2 in light blue. Let the pixels
on the outer ring be denoted as B = {bj | j = 1 . . . 16}. Each of the pixels in B
is labeled by one of three labels {d, s, l} that stand for darker, similar and lighter
respectively. The labels are determined by the pixel intensity Ibj

, the central intensity
at the saddle point ρ, and the method parameter offset ε as follows

Lbj
=


• d, Ibj

< ρ− ε
• s, ρ− ε ≤ Ibj

≤ ρ+ ε

• l, Ibj
> ρ+ ε

(3.1)

The color of the dots in (3.1) corresponds to the color of the dots in the outer ring
in Figs. 3.1 and 3.3 (b).

The test is passed if the outer ring contains exactly two consecutive arcs of each
label l and d, the arcs are of length 2 to 8 pixels and are alternating – the l arcs are
separated by d arcs. To eliminate instability caused by ρ-crossing between l and d
arcs, up to two pixels can be labeled s at each boundary between l and d arcs. Labels
s are pixels with intensity in ε-neighborhood of ρ, where ε is a parameter of the
detector.

The test may seem complex, but in fact it is a regular grammar expression, which
is equivalent to a finite-state automaton and can be implemented very efficiently.
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Figure 3.4: Detection on a 2D sinusoidal pattern under a perspective transformation.
Saddle and ORB detections are shown as circles of the outer ring size.

Both, the inner and outer rings can be unwrapped to become a sequence of discrete
elements (symbols) and be fed into a finite-state machine (FSM), known as the
acceptor [57] that after receiving the last element of the sequence, it outputs the
binary hidden state as accepted or rejected. The set of all possible accepted by the
sequences belong to the regular language defined by the FSM.

3.2.3 Post-processing

Each point p that passed the alternating pattern test for both the inner and outer ring
is assigned a response strength

R(p) =
∑

bj∈B(p)
|ρp − bj |.

The value of the response strength is used in the non-maxima suppression step and
to limit the number of responses if required.

The non-maxima suppression is only performed within one level of the pyramid,
features at different scales do not interact as the scale pyramid is relatively coarse.
This is similar to non-maxima suppression of ORB. For the non-maxima suppression,
a 3× 3 neighborhood of point p is considered.

As a final post-processing step, position refinement of points that passed the
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Saddle
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ORB

50%

SURF

52%

DoG

50%

76% 62% 58% 25%
Figure 3.5: Coverage by ground-truth validated feature matches on selected image
pairs from the Oxford dataset[122, 120]. In the rows with gray-scale images, the
positions of the feature centers are marked with yellow dots. The covered area is
computed as a union of circles with a 25 pixel radius centered on the matches. The areas
are visualized in the rows of images with masks colored consistently with the detectors.
Each column corresponds to the detector writen on the top and the percentage of the
image area covered by the mask is writen at the bottom.

non-maxima suppression state takes place. A precise localization of the detected
keypoint p within the pyramid level is estimated with sub-pixel precision. The x and
y coordinates of p are computed as a weighted average of coordinates over a 3× 3
neighborhood, where the weights are the response strengths R of each pixel in the
neighborhood. Response of pixels that do not pass the alternating pattern tests is set
to 0. The feature orientation is defined by the vector from the feature center to the
intensity centroid [158], computed within the image patch of 31× 31 pixels in the
corresponding scale.

Examples of local regions that fire Saddle detector are presented in Fig. 3.7. The
image pyramid used has 8 levels and the decimation factor is 1.3. The 4 features in
the same row were chosen randomly along all detections that belong to the same
level. Saddle tests are applied on a decimation pyramid of L levels (each image
independently) which is computed resizing the input image as follows:

[ui, vi] = [u, v] ∗ σ−i
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Figure 3.6: Positions of
matched interest regions de-
tected with Saddle, ORB, SURF
and DoG showing the detection
complementarity.

Figure 3.7: Saddle detections on a natural image. The left-side of each sub-image
shows the inner and outer rings overlapped with the actual image patch observed by
the detector, and the right-side shows the position and scale of the keypoint and its
neighboring region on the original resolution. The color code of the circular geometries
from the 1st to the 8th level of the pyramid are blue, light blue, cyan, green, yellow,
orange, red and brown respectively.

where, ui, vi are the size of the i-th level, u, v are the size of the input image and σ
is the scaling factor [164]. Since the Saddle detector is very dense for small values
of ε (1 in our experiments), the number of features is bounded on each level of the
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pyramid decimation.

|Fi| = |F| ∗
(

1− σ−1

1− σ−L

)
∗ σ−i

where |Fi| is the size of the feature set detected on the i-th level and |F| is the
size of the union set of all levels [164]. In most of the natural images tested in our
experiments, the number of detections on each level is higher than |Fi|, hence the
set of points must be bounded by ranking them with respect to their responses, i.e.
for all points detected in i-th level only the |Fi| points with highest R are taken. The
ranking step is efficiently implemented with the quick-sort algorithm that partially
sorts the list of points where the top-|Fi| points have greater or equal response than
the |Fi|-th point. The response function can be interpreted as the contrast present
in the center of the Saddle point. It is defined as the absolute difference of the two
pixels that are nearest to the median of intensities corresponding to the position of
the inner ring, i.e. the two pixels used to compute the median itself.

3.3 Experiments with Saddle detector

In this section, we experimentally evaluate the properties of the proposed Saddle
detector. The performance is compared with a number of commonly used feature
detectors on standard evaluation benchmarks. A more detailed description of the
experiments regarding our proposed detector and the whole stereo matcher, see the
paper [7] which is published as part of this research project.

3.3.1 Synthetic images

We first compare the properties of the Saddle and ORB detectors with three experi-
ments on synthetically generated images.

First, features are detected on a chessboard pattern with progressively increasing
blur, see Fig. 3.8. Saddle point detection is expected in the central strips, ORB
detection on the corners on the right edge and potentially near the saddle points.
Saddle features are repeatedly detected at all blur levels and are well located at the
intersection of the pattern edges. ORB features are missing at higher blur levels and
their position is less stable.

A phenomenon common to corner feature points – shifting from the corner for
higher scales and blur levels is also visible. Note that since the scaling factor between
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pyramid levels of Saddle is 1.3 while for ORB it is 1.2, Saddle is run on a 6 level
pyramid and ORB with 8 to achieve a similar range of scales.

Second, a standard synthetic test image introduced by Lindenberg and used in
scale-space literature [101] is used, see Fig. 3.4. The Saddle points are output at
locations corresponding to saddle points across all scales in the perspectively dis-
torted f(ξ, η) = sin(ξ) sin(η) pattern. Since there are no corners in the image, ORB
detections are far from regular and are absent near the bottom edge. Fig. 3.6 shows
the detector complementarity, i.e. Saddle fires on regions where other detectors have
none detections. For the experiments in synthetic data, Saddle has the minimum
arc length equal to 2 pixels, the maximum equal to 8 pixels, ε equal to 1 and the
image pyramid with factor equal to 1.3 with 6 levels. On the other hand, the ORB
setting has contrast threshold equal to 20 (preserved fix for later experiments) and
the pyramid is built with a decimation factor equal to 1.2 with 8 levels.

As the last experiment with synthetic data, the behavior of the compared detectors
is shown in two geometric patterns employed for testing the accuracy of corners
detectors, likewise the SUSAN [178] and SFOP [53] detectors. For consistency, the
parameters of the detectors are set identically and in order to avoid an overpopulated
plot L is equal to 4, σ is equal to 1.3, ε is 21 and |F| is set to 200. The Fig. 3.9
presents the detections of ORB (top row) and Saddle (bottom row). Notice that the
number of keypoints in the image of a Siemens star with regular beams (left column)
reach the threshold L. The detectors fire in multiple levels due to the high contrast
and sharped edges of the patterns, however Saddle fires consistently in the center of
the image where the spatial frequency is higher and the beams at certain resolution
look like intensity saddle points, thus the detections lie farther from the star center
with the increasing scale. The image with gray scale polygons (right column) allows
Saddle to fires rarely since there are no shapes similar to saddle points, nevertheless
ORB overfires in the same image, even along the edges which is not convenient for
stable tracking points.

3.3.2 Coverage of interest regions

Saddle and ORB detections are compared with respect to their spatial distribution
on a set of 27 images with medium level of noise from Oxford-Affine [120] and
HPatches [210]. The evenness of a spatial distribution of points in the scene that a
given detector can locate with high repeatability is a desirable feature of the detector
itself. Therefore, we propose to measure this property with two metrics of the
normalized area in the image covered by the keypoints. The metrics are defined as
follows, a mask is computed driven by the location of the detected keypoints and
its area is normalized by the image size, thus for a completely covered image the
metrics gives 1 and 0 for an empty feature set. However, the two metrics differ in the
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Figure 3.8: Detection on a progressively blurred chessboard pattern. Circle color
reflects feature scale, its size shows the extent of the description region.

way the mask is computed. For the first metric, a circle with center in the keypoint
position [70] and 25 pixel radius is drawn in the mask for all keypoints with fixed
radius. Finally, the mask is computed as the union of circles. The second metric
is inspired by [125] where it identifies the most commonly photographed parts of
a building for image retrieval. In this case, the mask is computed considering the
size of the keypoints, i.e. the scale. The radius of the circles is proportional to the
measurement regions [146] (local regions used for description), again, the mask is
the union of the given circles.

The heatmaps are defined as the accumulative number of circles drawn in the mask
of the second metric, as examples, 6 images are presented in Fig. 3.10, in all images,
Saddle covers a larger area than ORB, covering relevant areas for image registration
or 3D reconstruction, i.e. the facades of the buildings. The experiment shows that
Saddle fires at wider areas along different scenes. Fig. 3.11 shows the coverage
obtained by running both detectors on the image set, fixing the decimation factor
to 1.3, and Saddle gets a higher coverage on 100% of the images under the fixed
radius circles approach with a mean absolute difference of 6.1%. The measurement
region driven approach shows that Saddle has a larger coverage in 78% of the images
with a mean absolute difference of 5.2% when Saddle has larger coverage and 1.6%,
otherwise. Since most of the feature detectors can be tune to over-fire, we introduce
an experiment where 4 detectors with equivalent setups and bounding the number of
keypoints to 1K for the sake of consistency. In order to not biased the experiment
the keypoints are selected with respect to the corresponding response, i.e. we take
the top 1K strongest points. In addition the coverage is computed increasing the size
of the feature set. The idea behind is to show the contribution in coverage meanwhile
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Figure 3.9: Saddle and ORB features detected in synthetic images designed for
accurate location of corner detectors. The left column shows the geometric pattern
proposed in SFOP keypoint detector[53] and right column shows the pattern proposed
by the SUSAN corner detector[178]. For the sake of clarity, the image pyramid have 4
levels, the maximum number of features is fixed to 200 and the decimation factor is 1.3,
for both detectors. The ε value is equal in both detectors. Notice that, in some cases that
maximum number of features is not reached.

points with weaker response are added progressively. Fig. 3.12 shows that Saddle
covers a larger area for a fixed set of features in comparison with other detectors.

3.3.3 Coverage of matched regions

In some task, such as structure from motion, good coverage of the image by matched
point is crucial for the stability of the geometric models and consequently for the
reliability of the 3D reconstruction [70]. Note that the coverage is a complementary
criterion to the number of matched features, which is addressed in Section 3.3.5.
A high number of clustered matches may lead to poor geometry estimation and to
incomplete 3D reconstruction.
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(a) (b) (c)

Figure 3.10: Heatmaps for Saddle and ORB detections. Column (a) shows the original
images, columns (b) and (c) show heatmaps for Saddle and ORB, respectively. Heatmap
represents the number of interest regions current pixel belongs to. The heat pseudo-color
indicates the final countings along the feature sets.

To compare the coverage of different feature detectors, we adopt the measure pro-
posed in [70]. An image coverage mask is generated from matched features. Every
tentative correspondence geometrically consistent with the ground truth homography
adds a disk of a fixed radius (of 25 pixels) into the mask at the location of the feature
point. The disk size does not change with the scale of the feature. The matching
coverage is then measured as a fraction of the image covered by the coverage mask.

Extensive experiments show that the proposed Saddle detector outperforms all
other compared detectors: ORB, SURF and DoG. The covered areas are shown in
Fig. 3.5. The superior coverage of the Saddle detector is visible on Fig. 3.13.
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Figure 3.11: Coverage of keypoint locations in 27 images taken from OxAff[120, 122],
EF[215], GDB[79] and SymB[62] datasets. The normalized area of the image covered
by union (overlap) of fixed radius circles centered on the feature positions is shown in
the top row, and the coverage computed by thresholding to 1 the number of features
whose measure regions lie on each pixel is shown in the bottom row. Note that Saddle
covers larger area in 100% of the images (upper row) and also it is higher in 78% for
the second metric (bottom row).

3.3.4 Saddle position accuracy

The accuracy of Saddle was assessed on the Oxford-Affine dataset. The cumulative
distributions of reprojection errors with respect to the ground truth homography of the
OxfAff dataset is presented in [6] where Saddle is compared against its competitors.
Saddle marginally outperforms ORB and DoG performance is superior in most cases.
In fact, the reprojection error ε is defined as

ε(p,p′) = ||p−Hp′||, (3.2)

where p,p′ ∈ R2 are the XY position of a pair of points in correspondence from
the reference and target images, respectively. The matrix H ∈ R3×3 is the ground
truth homography that transforms the coordinate system of the target image into the
reference one. A feature match is considered as an inlier if ε ≤ 5 pixels.

52



...........................3.3. Experiments with Saddle detector

Figure 3.12: Average coverage of detected keypoints along all images of the OxAff
dataset. The y-axis is the normalized coverage and the x-axis is the percentage of the
complete keypoint set. Only 1K points are taken from each detector and points are
selected by ranking them with respect to the response.

EF [215]

Saddle: 37

ORB: 19

SymB [62]

Saddle: 12

ORB: 11

GDB [79]

Saddle: 13

ORB: 0

Figure 3.13: Detected and matched keypoints for Saddle (top) and ORB (bottom).
The inliers count is given for both detectors for each image. Note that Saddle points are
spread more evenly making the homography estimation more stable.

3.3.5 Matching ability

In this section we follow the detector evaluation protocol from [130]. We apply it
to a restricted number of detectors – those that are direct competitors of Saddle:
ORB [164], Hessian [123] (extracting similar keypoints) and SURF [18] (also
known as FastHessian). The evaluation of the matching performance is done over
5 challenging dataset with natural images where the image pairs (cameras) have
wide-baseline due to different type of nuisance. Details of the datasets is presented
in the Tab 3.1.

We focus on getting a reliable answer to the match/no-match question for challeng-
ing image pairs. Performance is therefore measured by the number of successfully
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matched pairs, i.e. those with at least 15 inliers found. The average number of inliers
provides a finer indicator of the performance.

Results are presented in two tables. Table 3.2 shows the results for a setup that
focuses on matching speed and thus uses the fast [29] and FREAK [2] descriptors
(OpenCV implementation). Saddle works better with FREAK, while ORB results
are much better with BRIEF. Saddle covers larger area and on broad class of images
(e.g. see Figure 3.13), but needs different descriptor than BRIEF, possible optimized
for description of saddle points, i.e. selecting the binary questions similar to those of
BRIEF but training with Saddle rather than FAST features.

In the experiment Saddle is run with a combination of RootSIFT [9] and Half-
RootSIFT [79] as descriptors (see Tab. 3.3). This combination was claimed in recent
benchmark [130] as best performing along broad range of datasets and it is suitable
for evaluation of the matching potential of the feature detectors. The MODS-ORB
and MODS-Saddle are added as state-of art matchers in their original setup, where
ORB is replaced by Saddle. Most time is taken by description and matching.

Note that one could use both Saddle and ORB detectors and benefit both from
their speed and their complementarity (last rows in Tab. 3.2).

Matching performance is compared on two additional datasets are used: A per-
spective change of planar scenes dataset following the same protocol as [122, 120]
proposed in [39] and a dataset proposed by Lebeda in [92] which consist of 16 image
pairs geometrical related by homography.

Short name Description Proposed by #images Nuisanse type

OxAff Affine Covariant Regions Mikolajczyk, 2013 8x6 Geom., blur, illum.
EF Edge Foci Interest Points Zitnick and Ramnath, 2011 8x6 geom., blur, illum.
GDB Multi-modal and non-linear intensity Kelman, 2007 22x2 illum., sensor
SymB Local Symmetry Features Hauagge and Snavely, 2012 46x2 appearance
HP HPatches benchmark Balntas, 2017 116x6 geom., illum.

Table 3.1: Datasets used in the evaluation of the detectors in the wide-baseline stereo
task: OxAff[120, 122], EF[215], GDB[79], SymB[62] and HP[11]. The parameter
variance between image pairs is described in the nuisanse type column.

3.3.6 Strategies for tentative matches

As an additional contribution of this work, we propose to match binary descriptors
with the strategy called First Geometric Inconsistent Nearest Neighbor (1GINN)
using Hamming distance. The 1GINN strategy was proposed in [132] to match
floating point descriptors with Euclidean distance. The experiments in [132] show
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Detector # Features Scale factor Descriptor EF Oxford SymB GDB HPi HPv

#
time
[s] inl. #

time
[s] inl. #

time
[s] inl. #

time
[s] inl. #

time
[s] inl. #

time
[s] inl.

ORB 500 1.2 rBRIEF 7 0.1 33 34 0.1 127 6 0.1 65 6 0.1 53 236 0.3 95 264 0.3 101
Saddle 500 1.3 rBRIEF 16 0.2 40 34 0.2 133 12 0.3 46 10 0.4 52 248 0.5 109 267 0.6 95

ORB 500 1.2 FREAK 9 0.1 32 35 0.1 100 6 0.2 54 5 0.2 49 219 0.4 74 267 0.4 97
Saddle 500 1.3 FREAK 9 0.2 27 31 0.2 96 12 0.2 31 6 0.3 44 212 0.5 79 256 0.7 86

ORB 1000 1.2 rBRIEF 20 0.1 39 37 0.1 240 22 0.2 50 9 0.2 84 269 0.3 173 280 0.4 195
Saddle 1000 1.3 rBRIEF 20 0.3 71 36 0.2 269 17 0.3 71 8 0.5 104 255 0.6 207 277 0.7 190
Saddle+ORB 500+500 1.3/1.2 rBRIEF 23 0.5 50 36 0.6 259 16 0.7 64 9 0.9 88 264 0.7 193 277 0.9 193

ORB 1000 1.2 FREAK 9 0.2 54 34 0.2 207 10 0.2 72 6 0.2 99 234 0.4 146 268 0.5 198
Saddle 1000 1.3 FREAK 11 0.2 57 34 0.3 193 11 0.3 63 4 0.4 112 225 0.6 144 265 0.7 177
Saddle+ORB 500+500 1.3/1.2 FREAK 12 0.2 63 34 0.3 196 11 0.3 67 7 0.4 92 230 0.7 142 263 0.8 180

Table 3.2: Saddle evaluation with fast BRIEF and FREAK descriptors. The sub-
columns are: the number of successfully matched image pairs (left), average running
time (all stages: read image-detect-describe-match-RANSAC), average number of inliers
in matched pairs (right). Darker cell background indicates better results.

Detector # Features Descriptor EF Oxford SymB GDB HPi HPv

#
time
[s] inl. #

time
[s] inl. #

time
[s] inl. #

time
[s] inl. #

time
[s] inl. #

time
[s] inl.

ORB 500 SIFT 6 0.4 32 33 0.6 116 8 0.5 46 5 0.5 60 226 0.9 80 240 1.2 98
Saddle 500 SIFT 11 0.9 34 33 0.6 107 11 1.1 42 4 0.8 57 229 1.2 84 244 1.6 93

ORB 1000 SIFT 15 0.7 34 35 1.1 229 16 0.9 59 7 0.9 9 255 1.5 156 261 2.0 183
Saddle 1000 SIFT 15 0.7 44 34 1.1 226 16 1.0 59 7 1.5 71 255 2.2 154 258 3.3 176
Saddle+ORB 500+500 SIFT 11 1.1 48 34 1.5 221 15 1.3 59 8 1.5 69 252 1.5 143 260 2.0 174

MODS-ORB n/a mix 33 0.6 34 40 0.2 148 44 2.6 37 18 2.2 73 285 0.2 97 295 0.2 123
MODS-Saddle n/a mix 33 0.7 36 40 0.3 143 43 2.5 34 20 1.7 69 285 0.6 102 295 0.6 108

Table 3.3: Saddle evaluation with a combination of RootSIFT and HalfRootSIFT
descriptors. The subcolumns are the same as in Table. NMS stands for spatial non-
maximum supression, indicating its application. In MODS-S, ORB was replaced by
Saddle+FREAK, other parameters kept original. Darker cell background indicates better
results.

that the 1st to 2nd descriptor distance ratio degrades its performance when multiple
observations of the same feature are present. The matching approach with view
synthesis [130] is the responsible for creating multiple and similar descriptors of the
same point of interest thus the 1GINN compares the first closest descriptor distance
with the distance to the descriptor that is geometrically inconsistent with the first
one. The descriptors in one image are geometrically inconsistent if the Euclidean
distance between centers of the regions is ≥ N pixels, in our experiments we set N
equal to 5.

In the literature we can find that binary descriptors are matched [29, 164, 97, 2],
as an standard practice, with the strategy called First Mutually Nearest Neighbor
(1MNN) with hard thresholding of Hamming distance[140, 188]. Our proposed
matching strategy avoids dropping tentative matches by the distance ratio of multiple
instances of the same region, and speed is not hurt because the Hamming distance
is computed very efficiently on CPU architectures. Even that in our matching task
there is no view synthesis involved, the keypoint instances are replicated because
the non-maximum-suppression is not performed across scales (3-Dimensionally).
As a consequence, the same point in the scene fires the detector in more than one
level of the pyramid thus in the final feature set there are very similar descriptors
corresponding to the same spatial location.
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Figure 3.14: Matching strategies for rBRIEF descriptor: Number of correct matches
(left column), the inlier ratio (right column) over two sequences where the imaging
nuisances are the change on zooming and rotation (upper row) and the viewpoint
(bottom row). Strategies: 1st symmetric (1SNN), 1st mutual (1MNN) and 1st geometric
inconsistent (1GINN) nearest neighbor.

The matching performance of Saddle features described by rBRIEF is tested on
sequences of [122], where the imaging changes are zooming, rotation and perspective.
Notice that rBRIEF [164] is an improved approach of BRIEF [29] and it is used
inside of ORB. rBRIEF uses a greedy algorithm for searching the set of the least
uncorrelated and with means nearest to 0.5 binary tests among all possible ones
inside a 21 × 21 image patch. The learned binary descriptor has a significant
improvement in the variance and correlation over the baseline implementation.

In addition to the 1MNN and 1GINN matching strategies, the First Symmetric
Nearest Neighbor (1SNN) strategy is included in the comparison. 1MNN and 1SNN
are distantance threshold based and 1GINN is ratio based. The results are shown on
Fig. 3.14. Notice that the number of correct matches is significantly higher for 1SNN,
which is expected since by construction the tentative correspondences are computed
from the union of the left-to-right set and right-to-left set of tentatives, while 1MNN
is the intersection (more strict rule) between sets and 1GI consists on left-to-right set
only. However, the inlier ratio is significantly higher for 1GINN which leads to a
faster convergence of RANSAC without sacrificing speed on descriptor dissimilarity
computation. Results on blaring sequences are consistent and similar to the previous
ones. Notice that 1MNN and 1SNN are both computed by hard thresholding of
the Hamming distance, showing that the standard matching of binary descriptors is
outperformed by the 1GINN.
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Min.
arc

Max.
arc ε

Num.
levels

Decimation
factor EF GDB Oxford SymB HPv HPi

Solved
pairs

#
time
[s] inl. #

time
[s] inl. #

time
[s] inl. #

time
[s] inl. #

time
[s] inl. #

time
[s] inl. %

2 6 1 7 1.3 14 0.3 37 11 0.5 44 36 0.3 238 17 0.4 26 284 0.4 180 264 0.3 188 87.80
2 7 1 8 1.3 16 0.3 37 10 0.5 42 37 0.3 243 18 0.4 28 276 0.4 179 266 0.3 186 87.38
2 6 1 9 1.3 17 0.4 38 9 0.5 40 37 0.3 238 19 0.4 29 280 0.4 175 261 0.4 193 87.38
2 5 5 7 1.3 16 0.3 35 12 0.4 42 37 0.3 226 16 0.4 25 283 0.4 167 259 0.3 176 87.38
2 7 5 8 1.3 16 0.3 38 10 0.5 41 37 0.3 242 19 0.4 28 281 0.4 178 260 0.3 183 87.38
2 6 5 8 1.4 17 0.3 35 12 0.4 44 37 0.3 251 20 0.4 28 279 0.4 163 258 0.3 184 87.38
3 7 1 7 1.3 19 0.3 41 9 0.5 40 38 0.3 233 18 0.4 27 278 0.4 166 260 0.3 179 87.24
2 8 3 7 1.3 15 0.3 37 10 0.5 43 37 0.3 243 18 0.4 28 279 0.4 181 263 0.3 186 87.24
2 5 3 8 1.3 17 0.3 38 13 0.5 44 36 0.3 225 16 0.4 25 280 0.4 166 260 0.3 177 87.24
2 6 5 7 1.2 17 0.3 38 12 0.5 45 37 0.3 227 14 0.4 25 279 0.4 175 262 0.3 174 87.10

Table 3.4: Performance of multiple setups for the Saddle detector. A setup is defined
by the minimum and maximum arc lengths of the significant darker/brigther outer ring
pixels, the significant constrast threshold (ε), the number of levels in the decimation
pyramid and the decimation factor.

3.3.7 Saddle and Hessian intersection

Saddle is intended to fire in the positions where the negative determinant of the
Hessian matrix is a local maximum, thus parameter settings are fixed in order to fulfill
the inner and outer patterns in the same positions in space and scale of a Hessian
pyramid. In order to find the Saddle’s setup with the best matching performance, the
713 image pairs included in the six dataset presented in Tab. 3.1 were matched with
MODS [132] using Saddle as detector and rBRIEF as descriptor. A setup involves:
Minimum (m) and maximum (M) arc length of the significantly darker/brighter
pixels in the outer ring, the intensity threshold epsilon (ε), the number of levels in
the decimation pyramid (L) and the decimation/scale factor (σ), then each image
pair with more than 15 correct correspondences is regarded as a solved problem.
The setups were ranked by the number of solved problem across all datasets and the
top 10 best setups are shown in Tab. 3.4 with average matching time and number of
inlier correspondences on 4 datasets.

In order to investigate whether there is a correlation between the number of solved
problems and the precision of Saddle locations with respect to the local minima of
the Hessian response for a given parameter setup, the Saddle-Hessian intersection
metric is proposed in a precision recall fashion as follows

recall = # caught hessians

# hessians
and precision = # caught hessians

# Saddles
,

where a Hessian feature is regarded as caught if its measurement region overlaps
(intersection over union) with the closest Saddle region, in euclidean distance to
the feature centers, is larger than 40% likewise the overlapped regions shown in
Fig. 3.19. The metric is computed on the second image of each pair, i.e. the image
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Figure 3.15: Normalized histograms of euclidean distances from Random, ORB and
Saddle points to the nearest reference feature points, top – Hessian, bottom – Harris.
Distances are in pixels.

matched against the reference one. Finally, the mean F1 score (defined in Eq. 3.3) is
computed across all image pairs.

F1 score = 2 · precision · recall
precision+ recall

(3.3)

Since Saddle interest regions are supposed to be posed on intensity saddle points
in the image and ORB regions on corners, their spatial distribution on the image
are expected to be consistent with Hessian response minima and Harris response
maxima, respectively. The spatial distributions of Saddle and ORB are represented
by the histograms of Euclidean distances from the feature center to the nearest
Hessian (with negative determinant) and Harris feature centers, which are shown on
Fig. 3.15 with the addition of the distribution of distances to random points. Note
that as expected, the hand-crafted feature detectors fires on the corresponding kind
of interest points, i.e. saddles and corners.

3.3.8 Repeatability

In this section we evaluate the repeatability and the number of correspondences
with the benchmark of [123], where the interest regions detected on the reference
image are reprojected on the target images with the ground truth homography that
geometrically relates the image pair. For each pair, the set of correspondences is
formed up with the feature pairs with a normalized overlap larger than 60% and
the repeatability is defined as the number of correspondences normalized by the
cardinality of the smallest feature set.
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Figure 3.16: Repeatability and correspondences on the OxAff dataset. Features from
j-th view are reprojected to the reference image (i) with the ground truth homography
that relates them. Image pairs i|j are indicated on x-axis.

The OxAff dataset is used for evaluation and the number of features is bounded for
each experiment, following the criterion described on Sec. 3.2.3, to test the matching
power with respect to the size of the feature set. The results for 6 sequences are
shown in Fig. 3.16, where the x-axis indicates the image pair 1|j for the j-th target
image.

The experiments show that Saddle outperforms ORB in the sequences where the
nuisance is zoom+rotation (bark and boat) for both repeatability and correspondences.
For changes on blurring (trees) ORB is slightly better on the easiest pairs of the
sequence and Saddle performs better for the hardest pairs. JPEG compression (UBC)
and reprojection affect the correspondences of both detectors almost identically but it
hurts the repeatability of Saddle more. Finally, the changes in viewpoint (graffiti and
wall) affects both to the same degree building correspondences, Saddle has better
repeatability on scenes that are similar to wall and worst repeatability when it is
similar to graffiti. Note that for changes in viewpoint the differences in performance
are almost despicable.
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Figure 3.17: Average run-time for ORB and Saddle on the Oxford-Affine dataset
(average image size is ≈ 900× 600 and average number of features is ≈1000).

3.3.9 Speed

The time breakdown for Saddle and ORB image matching on the Oxford-Affine
dataset is shown in Fig 3.17. Saddle is about four times slower than ORB in the
detection part. However, we have not utilized SSE instructions in the Saddle tests.
The results show that both Saddle and ORB are faster than the FREAK descriptor,
but significantly slower than BRIEF. The slowest RANSAC step is observed when
Saddle is described by BRIEF, the time increase because RANSAC is reaching the
maximum number of iterations when it fails to match an image pair. For each of
the two cross inner tests of Saddle, 75% of the points require 2 comparisons, 5%
require 3 and 20% require 4 comparisons. 15% of the points are accepted after 4
comparisons. Percentages refer to the total number of neighborhoods tested.

3.3.10 Photo-tourism stereo matching

In this section we present results of large-scale detector evaluation recently proposed
in [12]. The dataset consists of 11 sets, 100 images each. Up to 8K keypoints and
descriptors are extracted in each image, then the exhaustive matching is applied.
The obtained correspondences are then fed into RANSAC which estimates essential
matrix between each pair of images. Then the obtained essential matrices are
compared to ground truth matrices. Unlike other benchmarks, this one measures not
the single property of the detector – like repeatability or coverage, but performance
for the end task - recovering camera pose.
Because of the wide baseline, the binary descriptors are performing poorly in the
benchmark, so we used near state-of-the-art HardNet descriptor [129] for all the
detectors.
All the images are upright, so orientation estimation procedure was turned off for all
the setups. Thus, the results show the pure detector performance.
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Figure 3.18: Detectors comparison on recovering camera pose difference on Photo-
tourism Challenge [12]. Mean average precision at different precision thresholds is
reported.

Figure 3.19: Examples of Hessian (green) and Saddle (red) regions overlap. The
circles represent the regions used for description and the colored area (yellow) shows
their intersection. The two feature pairs presented in each column were selected as
the maximum and minimum normalized overlaps, whether exists, found in the same
image.

We report the results for the Saddle, ORB and Hessian detectors in Figure 3.18. Both
Saddle and ORB are worse than Hessian, but Saddle outperforms ORB (FAST) for
all precision thresholds.

3.4 Discussion

Experiments show that the Saddle features are general, evenly spread and appearing
in high density in a range of images. The Saddle detector is among the fastest
proposed. In comparison with detector with similar speed, the Saddle features show
superior matching performance on number of challenging datasets. Compared to
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recently proposed deep-learning based interest point detectors and popular hand-
crafted keypoint detectors, evaluated for repeatability in the ApolloScape dataset [67],
the Saddle detectors shows the best performance in most of the street-level view
sequences also knowns as traversals.

After the exhaustive evaluation of Saddle, we conclude that its performance is
suitable to be integrated in the relevant shot detection pipeline for video re-ranking.
Saddle is a fast and reliable feature detector that enable super real-time performance
and the usage of binary descriptor brings the advantage of fast similarity metric, like
Hamming distance, and compact models. Finally, Saddle is part of the local region
of interest detection component among other detectors. The performance of the
pipeline selecting Saddle is presented in Sec. 4.9.2. The following chapter describes
the full pipeline for video re-ranking.
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Chapter 4

Relevant shot detection

In this chapter we focused on the main problem addressed in the dissertation, the
full pipeline for scoring videos by relevance with respect to a object of interest. The
query, at the very first stage, is defined as a string that contains textual information
about the object and later is enriched with visual information of related images after
multiple filters to suppress outliers. The video list returned by the server is re-ranked
after scoring the each video with the final objective of having at the top of the list
the videos with longer exposure of the query in the screen. A suitable use case of
this approach is to establish a link between two important source of information,
Wikipedia and YouTube. The first one provided by textual information and images
embedded in the documents/pages and the second one a massive database of videos,
currently without a mechanism capable of relating their contents.

In the Section 4.1 we present an outline of all components that are part our
proposed approach, the description of the workflow and the context that support the
need of our fast feature detector presented in details in Chapter 3. We also present
in Section 4.2 the novel dataset used as the source of images to describe the visual
appearance of the target object and how we propose to index the dataset for textual
retrieval. In the Section 4.3 we discuss the approach for indexing the image database
in a different fashion, the goal is to build a search engine for image retrieval using
a state-of-the-art global descriptor based on deep features. The three algorithms
for modeling the query based on local features is present in the Section 4.4. We
discuss briefly in the Section 4.5 the usage of the API provided by the video sharing
web page to query the database and the implementation of the video acquisition
component. The same section describes the representation of the videos in order to
perform fast search on them. The algorithm to analyze a video frame in order to test
the presence of the query in the captured scene is presented in the Section 4.6. In the
Section 4.7 we introduce our novel shot boundary detector which performs a primal
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4. Relevant shot detection................................
task in video applications, it segments the video sequences into shots. Additionally,
in the Section 4.8 we discuss our interface embedded into a web page that access
pipeline and is provided with tools for fast access to relevant shots. Finally, in the
Section 4.9 we present the experiments related to the evaluation of the full pipeline.

4.1 Overview

In our proposed method, we are not interested in indexing a large and fixed corpus
of videos, since it is not realistic to preprocess all videos on the Internet, at least not
for us. Instead, we relay on text-based search capabilities provided by video sharing
websites, for example, YouTube. A short-list of videos is obtained by querying the
search engines of the website, however, the relevancy of such videos is noisy because
the search engine does not check the content of the videos.
We propose to perform an efficient visual content-based verification on the fly, in
order to re-rank the initial short-list. This document focuses on the object model
building from a set of images and on efficient on-line detection of the object in
videos. The method is summarized in Fig. 1.1.

The first version of the approach was introduced in [4], a work where we propose
a pipeline for retrieving videos from a website by full-text search of the user input
string and, additionally, the user must provide a set of images of the object of interest
in order to sort the list of videos with respect to their visual content. The pipeline
simplifies the user interaction asking only for the input string for searching images
and videos simultaneously. In this thesis we present contributions built on top of
the previous work. The images are suggested automatically to the user by means
of a full-text search engine implemented for this task. The visual assessment uses
images provided from a novel dataset built from documents of a community-driven
encyclopedia and semantic data from a community maintained ontology.

Due to the textual search of images is noisy by its own discriminative power
limitations, we propose to suppress inlier images by means of an image retrieval
engine based on state-of-the-art deep features. The model building stage in the
pipeline is improved with the support of multiple local image feature detectors and
descriptors to perform the image registration, feature reprojection and clustering.
Since the object detection method lies on stereo matching, we propose a novel shot
boundary detector that avoid the exhaustive frame comparison selecting frames
with a line search method followed by a binary search, and the similarity function
applies the wide baseline stereo matching, enabling the precomputation of the local
features required for the posterior stages. Another contribution is the addition of
frame-by-frame manual annotation of the 10 landmarks dataset introduced in [4], in
order to quantify the performance of the object detector method with precision-recall
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curves. Finally, a graphical interface for a WEB demo is provided as part of the
pipeline. The interface enables the user to access specific shots where the query
object is depicted by means of time stamps.

4.2 Image database for modeling

The collection of images called Landmarkdb, which is used to build the visual model
of the object of interest, comprehends images downloaded from Wikipedia pages.
Only pages of objects regarded as landmarks are considered to be processed, i.e.
download the images included in the page, captions and additional information that
describe the object and the content of the page. The classification is performed with
an algorithm that identifies landmarks reliably. In order to consider an object to be a
landmark, [72] introduced the following definition:

Definition 4.1. A landmark in Wikipedia, among other datasets, must satisfy the
following conditions:

. To have a title.. To have GPS coordinates.. To have an immutable location.. To be well-bordered.

A Wikipedia article has a table in the top-right corner of the page called info-box
which contains structured information. The info-box has a template name, common
to all info-boxes of of similar topic. On top of these template names, a hierarchy is
built using DBpedia as a method for template categorization. The target is to build a
semantic interpretation layer on top of Wikipedia articles exploiting data stored in
the info-boxes. DBpedia sorts the task out using a collaboratively edited mappings
from the info-box templates to their fields and from article classes to their properties.
Additionally, DBpedia contains a community maintained ontology which is a set of
relations among article categories and their descriptions, creating a knowledge base
capable to be processed by computer.

All the objects registered in the ontologies pass through the landmark classification
giving a set of 357K landmarks are identified among all Wikipedia and Wiki-data
pages in 390 languages. The images included in the corresponding article are
downloaded to conform a dataset of ≈ 1.1M images. Some textual information is
related to the images, i.e. their filenames and captions. At this stage, it is presumed
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that actual name of the landmark is contained in at least one of those fields. Such
information is indexed in a textual database and loaded in a search engine that allows
fast query of the string which is input data of the retrieval pipeline. Not all the
images in Landmarkdb are reachable by the text-based search because the caption is
not available in all Wikipedia images or the text doesn’t describe the captured scene
properly. In addition, the filenames are very noisy and they do not necessary contain
the related landmark name. Examples of textual queries and the retrieved images by
the search engine are shown in Figure 4.1.

St James’s House

Montreuil

Leland

Notre-Dame Basilica

Central Park

Figure 4.1: The Landmarkdb is queried with the string shown at the bottom of each
row. A subset of the images embedded with Wikipedia article are presented above.

The retrieved images by the text search engine are very noisy due to the ambiguity
of the input string, the lack of precision and subjectivity of the description and
captions. Note in Fig. 4.1 that images do not show the same landmark under the
same query and neither of them are related with the same object/place. The accuracy
in the retrieval is increased including visual information in the search, i.e. an image
retrieval approach is implemented for this purpose and it is described in the following
section.
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4.3 Image retrieval engine

Once the initial subset of images is retrieved by full text search with the input string
as query, we require an outlier suppression step before constructing the model with
such images. In this context, an outlier is an image that does not contain the query,
the interesting object for the user is not observable in the image. We propose a semi-
automatic process with two parts. First, the tentative relevant images are displayed
and the user is supposed to select one of them in the manner of manually annotation.
In the object modeling step, the selected image is the reference frame where features
of additional views are reprojected.

The second step involves an image retrieval engine which by construction intro-
duces visual information into the query. Basically, the image selected by the user is
the query of the content-based search. The result is a larger set of similar images
that are used to build the model and therefore search for it in the videos.

The database of the retrieval engine is the full Landmarkdb dataset (1.1M images)
indexed with the state of the art CNN global descriptor proposed in [153]. In our
pipeline, the network is used for inference only with the off-the-shelf model provided
by the authors. Some details of our setup are: 1) The images fed into the architecture
are resized to 1024 pixels along the largest dimension, 2) the image description
is done with multi-scale and global representation, 3) the images used to train the
model were selected automatically by the Structured-from-Motion 3D reconstruction
system introduced in [168, 152], 4) as part of the non-linearities of the regressor,
the Generalized Mean (GeM) is applied over the scales in the pooling layers of
the ResNet101 [63] architecture. ResNet101 is the baseline model chosen and fine-
tuned with hard-negative mining, and finally, 5) the fine-tuned GeM vectors are
post-processed for whitening and dimensionality reduction using linear discriminant
projections learned as Mikolajczyk and Matas proposed in [116], leaving global
descriptors of 2048 dimensions.

Fig. 4.2 shows 5 queries of the CNN image retrieval engine. The images with
green frame at the left side of the figure are the image queries. Basically, the queries
are the visual definition of the object of interest introduced by the user. At the right
side, we present the top 14 most similar images scored by a dot vector product
of the descriptors. However, even that the images are visually similar they do not
always contain the same object therefore and additional outlier suppression step is
required and it is included as the object modeling step that is described in details in
the following section.
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→

St James‘s House

→

Montreuil

→

Leland

→

Notre-Dame Basilica

→

Central Park

Figure 4.2: Image retrieval results. The user selects the left image as the query (green)
and the short list of relevant images in the Landmarkdb based on the visual content are
shown ranked from left to right. The landmark are consistent with Figure 4.1.

4.4 Query object modeling

In this section, the process of the object model construction is described. Our model
is a collection of local interest regions detected in the images that presumable contain
the object of interest. Rather than working with a single image as query, we use a set
of relevant images retrieved by the previous pipeline stage, i.e. the image retrieval
engine with deep CNN global descriptors. With multiple views of the same object we
get a larger and more diverse feature set as representation. We assume some parts of
the object are not represented with a single view of the object, i.e. counting with only
one camera pose to capture the object appearance can lead to incomplete coverage
caused by temporal occlusion caused by moving objects or partial occlusion due
to the camera pose itself. Additionally, the image quality can be compromised by
noise in the pixel intensities, illumination changes, etc. These factors reverberate
the descriptive power of the query, therefore, we propose to lessen the performance
hurting effects by adding more images to the model with different perspectives of
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the object.

From now on, the set of similar images retrieved from content-based search
(described in Sec 4.3) is known as the pool of images. As an introduction to the
object modeling strategies, we describe the processing workflow with the pool of
images.

The pool of images is transformed to a high-dimensional vectorial representation
of their local regions. For this task, we opt for multiple covariant region detector,
from similarity to affine covariant features. Later on, each geometry is represented by
a signature invariant to some image transformations. The robustness of the signature
depends on the description algorithm used. The decision made about which detector
and descriptor to use in the pipeline affects the overall performance of the system.

The modeling strategies lie on the selection of the reference frame for enriching
the feature set. The spatial location of the geometries detected along the pool of
images must be transformed into a canonical frame that it comes out to be the
coordinate system of one of the images, i.e. the reference image. In Section 4.3
is described that the reference image is manually selected by the user, however,
this process can be done without supervision by the Iconoid shift algorithm [196].
Iconoid shift finds the most central/iconic views of single objects or buildings in
large, unstructured image collections.
Each image in the pool works as a seed for the iconoid shifting process once. Image
are scored by the number of times it is selected as the mode, until the shifting
converges. Finally, the reference image is the one with the highest score.

Unrelated images are filtered out from the pool selecting only the top K images
inside the mode support. Images are scored by the Homography Overlap Distance
(HOD) defined in [196]. The experiments with Iconoid Shifting reveal that it is very
expensive for small pools ( 10 images) and it scales badly which is prohibited due to
our time constrains. We decided to not include this approach in our final pipeline
but we report the proof of concept of the approach for selecting the reference image
unsupervisedly. Fig. 4.3 (a)-(d) shows four pools of images, the green rectangles
indicates the reference images and the yellow rectangles correspond to the images
included in the mode support.

The image representation with local descriptors has a trade off between the
descriptive power related to the number of keypoints and the computational cost to
match/detect the model. Under some conditions, if the number of keypoints is high
and well distributed in the image, then it is more likely to match two images with
different viewpoints of the same scene. However, the number of the nearest neighbor
(NN) searches required for computing the tentative correspondences also grows
with the size of the feature set, making the representation prohibited for real-time
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(a) The Mona Lisa painting

(b) Notre Dame cathedral

(c) Starbucks logo

(d) Monumento a la Bandera

Figure 4.3: (a)-(d)Four examples of Pool of images. Reference images in green
rectangles and support sets in yellow rectangles.

applications. Besides the significant acceleration obtained by approximated NN
search [138], the selection of the keypoints is a important task in order to keep the
size of the model reasonable small without sacrificing performance.

The main motivation of our object modeling strategies is to increase the coverage
of the local features across the object of interest without adding irrelevant parts,
i.e. discard keypoints laying on regions that are not part of the query, like moving
objects. Our approach is two folded, first, we aggregate contextual information to
the query, adding surrounding regions that are consistent in different images in order
to recognize the original query. Second, in common image regions among multiple
views, the keypoints are highly overlap or possibly repeated. In consequence, the
descriptors of these regions are very close in the feature space leading to lose
performance with matching strategies based on distance ratios [106]. Our proposed
approach addresses these issues.

The modeling strategy is up to selection of feature detectors (Harris, Hessian, etc.)
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and descriptors (SIFT, BRIEF, etc.). The selection leads to performance changes, i.e.
the precision and recall in retrieval varies with respect to this selection. Experiments
for comparing the performance of different setups are presented in Sec. 4.7.3.

The main input of the model construction is the pool of images (P) and is defined
as

P = {pj}, ∀j = 1, . . . , P, pj ∈ RM×N , (4.1)

where P is the the pool size (number of images), pj is a single image of size M ×N .
The video, after being decoded, is a set of images defined as,

F = {fi}, ∀i = 1, . . . , F, fi ∈ RM
′×N ′ , (4.2)

where F is the number of frames in the sequence and fi is an image of size M ′×N ′.
In order to speed up the processing time, we do not search the object exhaustively
across all the frames, the highest sampling frequency is constrained by the codec,
since we test every I-frame (Intra-coded picture) [198] that it is a complete image
with least amount of artifacts caused by the interpolation and compression. As
preprocessing step of both model construction and object detection, the images are
represented by the set of descriptors computed from the local regions of interest found
in them. The specific feature detector and the descriptor used in the representation
are parameters to be set in the system.

(a) (b) (c)

Figure 4.4: The three types of models for our object detection approach: (a) Image-
wise, (b) Union and (c) Salient model. The step of the stereo matching is indicated
with a black arrow and the reprojection of features with a red arrow. The direction
of the arrows indicates the transformation from the target to the reference image. The
images fi (represented by the yellow squares) belong to the video clip, the images pj

(represented by the blue squares) are inside the pool used to build the models. In (b)
and (c) the Union model is represented by the dark red square and the salient model by
the green square.

4.4.1 The Imagewise model

The Imagewise model is the baseline of our object detection approaches where the
elements of P are treated independently. P pairs of images are defined between the
frame under test (fi) and each member of the pool (pj), then the pairs are fed into
our wide-baseline stereo matcher. The number of correct matches is defined as the
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relevance score of the given frame. The maximum score among the P image pairs is
preserve and assigned to the i-th frame. The Fig. 4.4(a) contains a diagram of this
model where the yellow squares represent the frames of the video, the blue ones
are the images in the pool and the black arrows indicate the stereo matching task.
In addition, the orientation of the arrow indicates the direction of the matching, i.e.
from target to reference image. It worth noticing that the Imagewise model is the
sets of geometries (and descriptors) without transforming the coordinate frames into
a common one.

4.4.2 The Union model

The second approach to build the object model in our proposal is called the Union
model. Assuming that the geometries and descriptors of the images in the pool
are computed, the approach requires one image to be the reference one, i.e. the
coordinate frame of this image is used as the reference. The remaining subset of
the pool are considered as targets to be matched against the reference image. As a
result of the matching process, we obtain the homography/affinity that relates each
pair of views. The points in correspondence are the input of RANSAC in such a
way that the direction of the transformation is from the target to the reference image.
Next, the geometries of the keypoints in the target images are reprojected to the
reference image, this is done by transforming the coordinate systems of the target
images applying the linear transformation that geometrically relates both images.
Basically, the feature set of the reference image is enlarged by aggregation of the
features detected in the target images under the same coordinate frame as a union
set of keypoints. The intuition behind this model is to enrich the detection of the
reference image with features extracted across other images, increasing the density
and diversity of regions of the image. The advantage of this model is the possibility of
storing the descriptors in an efficient data structure (k-D trees, hierarchical clustering,
LSH, etc.) and compute fast approximated nearest neighbor search to compute
distances between descriptors and run RANSAC only once for the whole model.
Once all the descriptors are inserted in the index (tree), the later can be stored and
reused for multiple videos as far as the pool does not change.

The Fig. 4.4(b) presents a simplified diagram of the union model where the blue
squares are the images in the pool and the yellow squares are the frame sequence of
the video. The reprojection of features is represented by the red arrows which shows
that the points are transformed from the pool to the reference image giving place to
the union set of features indicated with the dark red square with the ∪ symbol inside.
Finally the union set and the features extracted from the current frame of the clip
are fed into the matcher to compute the number of geometrically consistent matched
feature pairs. Given number corresponds, consistently to the Imagewise model) to
the relevance score. The last approach to model the query requires the union model
as input and it is described in the next section.
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A visualization of the progressive aggregation of images into the model is pre-
sented in the Fig. 4.5. The intensity (color) of the pixels are multiplied by a mask that
contains the shapes (ellipses in the case of affine covariant features) of the keypoints
detected on the image. The mask is not binary, each pixel contains the number of
geometries that lie on its position then regions with high density of keypoints are
brighter. At the bottom of the columns is written the number of images included in
the model. It worth noticing that contextual information is added to the model when
more images are in the pool, this can be observed in the surrounding regions of the
reference image.

1 2 3 4 5 6 7

Figure 4.5: Visualization of object models constructed under the UNION strategy. The
number of images inside the model is indicated at the bottom of each column. Starting
from the reference (column 1), the images in the pool are aggreagated progressively. The
shape of the features masks the pixels to merge their color in the registered image. The addition
of context information is observed from left to right.

73



4. Relevant shot detection................................
4.4.3 The Salient model

The third approach for modeling the query object to be search in video is called
Salient model. The input is the Union and algorithm is intended to reduces the size
of the feature set without hurting the performance of the matching or detection step.
The approach consists in modeling the density of the union set in the feature space
and keep features with high support, i.e. create a feature set of points located at high
density regions in the feature space. The density is approximated by the clustering
algorithm called DBSCAN [48] which is unsupervised and does not require to set
the number of cluster a priorly. The main reason to not used the standard k-means
algorithm is the lack of prior knowledge about the number of different distinctive
regions that the scene may contain, then we decided to do it data driven. In this
context, two keypoints are similar not only if the descriptor distance between them is
small, additionally, the points must lie close to each other in the XY space in order
to not introduce noise in the computation of the centroids. The descriptor used in
the clustering is a weighted concatenation of SIFT descriptor and XY position of
the feature center and, from now on, we refer to it as SIFT-XY descriptor. Basically,
every keypoint in the Union model is represented with a 130-D SIFT-XY descriptor,
where the position in the image coordinate frame are normalized by a constant
scaling factor ω. Experimentally, we fixed ω = 0.003 to get our best results.

The results of the clustering is the representation of object, i.e. the Salient
model. The singletons are clusters with only one member/sample and correspond
to keypoints that are isolated in both image and feature space. Our intuition is that
singletons do not belong to the query since they are unstable across different views
so they shouldn’t be sought in the video frames. On the other hand, clusters with
cardinality larger than one are subsets of confirmed features, in the sense that regions
look similar and they are geometrically consistent after reprojection. We named
salient clusters to the clusters with more than one sample and these keypoints must
be found in the video frame since we assume they belong to the object of interest.

Fig. 4.4(c) presents a diagram of the salient model computation where the union
model as the dark red square is fed into the clustering algorithm (white box with
an example of 3 clusters in a 2D space) and the final computation of the centroids
(salient features) is represented by green square marked with the letter S. Notice that
this model preserves the singletons since they provide information about features
that are very likely to find near the object but they are confuser samples. The way we
take advantage of the singletons is in the matching strategy described in Sec. 4.4.6.

A visualization of the clustering result is presented in Fig. 4.6 showing the three
largest salient clusters found in pools of different objects. The images are taken from
the dataset introduced in Sec. 4.9.1. Additionally, Fig 4.7 shows some examples
of singletons found in the same objects. The patches are normalized following the
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Starbucks logo

Christ redeemer

Guadalupe

Petra Jordan

Figure 4.6: Normalized patches of the features that DBSCAN assigns to clusters
with more than one member. One cluster gives place to one salient feature, since the
descriptors inside the cluster are combined to compute the new representative (centroid)
of the cluster. The black frames enclose all the patches inside the same cluster. Three
clusters per landmark are shown below the landmark name.

geometry of the keypoint, in this case, keypoints are local affine covariant detected
by the Hessian Affine detector.

4.4.4 The Mean-Salient model

The last modeling approach is the Mean-Salient model. We propose it as a compact
representation of Salient model, since for each salient cluster we compute a represen-
tative member or centroid and then read out the cluster. The centroids are computed
as the mean SIFT-XY descriptor of the member in the cluster and we called them
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Mona Lisa

Starbucks logo

Christ redeemer

Guadalupe

Petra Jordan

Taj Mahal

Figure 4.7: Normalized patches of the features that DBSCAN assigns to clusters with
only one member a.k.a singletons. In the feature space, the descriptors lie to far from
larger clusters to be grouped within them. Each column show at the top the name of
the query and below 25 patches selected randomly from the full set of singletons of the
model.

salient keypoints. All singletons are discarded in this model. A similar approach for
computing mid-level features is proposed by Koniusz et al. [82]. The full algorithm
to compute the set of salient features is summarized in Alg. 2.

4.4.5 Model statistics

The effectiveness of the object representation was tested in the experiments com-
paring the results using 2 types of representation. The first one was called Union
which is the set of reprojected features on the reference image with no filtering stage.
The second one was the set of salient features (described in Sec. 4.4) and it is called
Salient.

Tab. 4.1 contains the number of features in the two object representations and
the reference image itself. The average size of the salient representation is 3% of
the whole features detected on the pool of images (union) and 18% of the features
detected on the reference image. The significant reduction in the cardinality of the
feature sets was reflected in memory allocation and the complexity of matching
task. The average time for building a salient model was 4.1 sec. for a single image
pool. Construction time of Union models (1.27 sec) was obtained subtracting the
mean-shift clustering step. The percentages of processing time for each step of the
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Algorithm 2 Salient features
Input: Pool of images (P ), reference image (Iref )
Output: Set of salient features (SF)
N ← |P |
// Detect and describe image features
for i = 1 to N do

fi ← hessian_affine_detection(pi)
di ← SIFT_description(fi)

D = {d1, ..., dN}
// Features in images of the pool without the reference
C ← D \ {dref }
ci ∈ C, i = 1, ..., N − 1
// Set of reprojected features (RF)
RF← {fref}
for j = 1 to N − 1 do

Hj ← wbs_match(dref , cj)
RF← {RF ∪ reproject_features(Hj , cj)}

CL← DBSCAN_clustering(RF)
// Salient features are described by average SIFT
SF← average_SIFT(CL,RF)

return SF

model computation are shown in Fig. 4.18.

Query object Number of features Ranking quality

Ref. image Union Salient Text search Re-ranked

Taj Mahal 1368 11363 585 0.78 0.47
Petra city 3484 28109 1002 0.60 0.78

Notre Dame 5981 30611 2962 0.56 0.60
Monumento Patria 2764 14758 739 0.47 0.60

Mona Lisa 2303 17243 2449 0.47 0.73
Christ Reedemer 3771 10965 477 0.51 0.69

Coca Cola 834 8466 315 0.51 0.51
Starbucks 1408 12345 1017 0.33 0.56

Virgin Mary 6594 66675 5589 0.69 0.73

Table 4.1: The number of features in the object representations is shown: Ref. image
column for features on the reference images, Union column for features detected in the
whole pool of images and Salient column for selected features only. In addition, Kendall
tau rank correlation coefficients between the ground truth video ranked list and both
retrieved ranked lists, regarding the Text search list and the Re-ranked list by relevance
assessment, are shown as Ranking Quality. Best ranked lists are highlighted with bold
font.
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4.4.6 Matching strategies with models

The model-to-image matching task requires different strategies depending on the
model selected to represent the object. We describe our matching strategies in the
following sections.

1GINN for Imagewise, Union and Mean-Salient model

The descriptors extracted from a video frame are matched against a Imagewise,
Union or Mean-Salient by the 1GINN strategy proposed by Mishkin et al. [134].
The strategy is described in Sec. 3.3.6. 1GINN was originally proposed to match
images with view synthesis. A side-effect of the method is the computation of
multiple instances of the same 3D point, due to multiple detections in the generated
synthetic views. The standard matching strategy with first and second NN distance
ratio performs poorly in these conditions (see Sec. 3.3.5). In order to preserve correct
correspondences with distance ratio close to 1, 1GINN computes the distance ratio
to the nearest descriptor that comes from feature that is sufficiently far away in the
image coordinate frame from the tentatively corresponding one, which is known as
the first geometric inconsistent.

First Nearest Singleton for Salient model

One of the matching strategy for the Salient model is the 1st nearest Singleton (1NS).
As a result of clustering the SIFT-XY descriptors of the Union model, we obtain
the salient clusters and the singleton features. We assume that singleton features do
not belong to the query object even more singletons are counter examples of what
we are searching in the frames. On the other hand, we assume salient clusters are
stable and repeatable features that belong to the query object. Then, we propose to
score the tentative correspondences with the distance ratio of the first nearest salient
cluster (the nearest element) over the first nearest singleton. Under this definition the
distance ratio can be larger than 1, however, the smaller it is the higher confidence in
the correspondence.
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1st/2nd Distance Ratio for Salient model

The last matching strategy for the Salient model is similar to the standard one based
on distance ratios. We compute tentative correspondences with the 1st/2nd distance
ratio (2NN) as proposed in [106]. In order to not discard correct tentative matches
due to the high similarity of the elements in the same cluster, the first and the second
nearest neighbors must belong to different clusters.

Comparison of matching strategies

In this section we test and compare the performance of the matching strategies
described previously. The validation requires a ground truth transformation, in this
case an homography, that relates the image coordinate frame of the model with the
target image. Since such ground truth homography is not available in this context,
we approximate it with manually annotated correspondences between reference and
target images followed by LO-RANSAC [92].

In the next step a given matching strategy is applied to compute a set of tentative
correspondences. Such correspondences are labeled as inlier or outliers if the
reprojection error is larger that 5 pixels under the geometric transformation of the
approximated homography. Finally, the performance of the matching strategy is
measure by the number of inlier matches rejected and the number of outlier matches
accepted by the thresholding criterion of the distance ratio, i.e. a correspondence
is rejected if the distance ratio is lower than a threshold. Consistently to [106]
experimentally we found out that threshold 0.8 in average gives the best results for
all strategies.

Two examples of matching by 1st nearest neighbor (1NN) are shown in row (a)
of Figure 4.8, the inlier matches found by RANSAC are indicated with green lines
and the outliers with red lines. Then, 2NN and 1NS distance ratios are computed for
all tentatives correspondences in order to generate histograms for inlier and outlier
matches.
Fig. 4.8 presents the histograms of distance ratios in rows (b) and (c). Finally, using
the approximated homography as ground truth, we compute the Precision-Recall
curves with respect to the distance ratio threshold (see Figure 4.8(d)).

In both examples, the histograms show narrower and less overlapped discrete
distributions for the 1NS, which leads to a better tentative correspondences quality
changing the threshold. For threshold 0.8, as proposed in [106], both precision and
recall were higher for 1NS. Moreover, 1NS had an Average Precision (AP) of 0.89 in

79



4. Relevant shot detection................................
the first example and 0.56 in the second one, higher than 0.77 and 0.42, respectively,
for the 2NN matching strategy.

(a)

(b)

(c)

(d)

Figure 4.8: Row (a) Pairs of images matches by 1NN and RANSAC, green lines are
geometrical consistent tentative correspondences (inliers) and red lines are incorrect
ones (outliers). For both inlier and outlier matches, the 2NN distance ratio was computed
and (b) shows the normalized histograms. Row (c) shows the normalized histograms of
the 1NS distance ratio. The Precision-Recall curves of both distance ratio definitions
is shown in row (d), changing the threshold for dropping correspondences. Operating
point for threshold 0.8 is indicated by red markers, and the Average-Precision is written
in the plot legend.
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4.5 Video acquisition and representation

The video re-ranking pipeline relies on a third party video server with a search engine
working independently, since we do not attempt to build our own indexed video
database. Even though the approach for video relevance assessment and re-ranking
is up to the video database infrastructure, we use YouTube service for sharing videos
publicly. The motivation of our selection is the API provided by the developers
of the server, such API is flexible and provide us with all capabilities to shape our
queries.

Specifically, the API is called YouTube Data API [55]. Such interface allows
to add features available in the website. Some capabilities are uploading videos,
managing playlists and subscriptions, update channel settings, and among others.
Our proposed pipeline uses the API to search for videos matching specific search
terms, topics, locations, publication dates, etc. The main method used for our concern
is search.list since it queries the video database with a string as input, presumably,
the name of the object of interest. Additionally, the method supports searching for
playlists and channels, however, processing such data types are out of the scope of
this thesis.

The procedure for retrieving a short list relevant videos with respect to the query
string is:..1. Query YouTube database with the input string. The server responds with a list

of hashes (videoIDs) of the relevant videos...2. Download the videos by hash with the library called Youtube-dl [157]...3. Get the indexes of the keyframes inserted by the encoder using FFMPEG
library [49]...4. Under the setup for the relevance assessment pipeline, detect and describe the
keypoint from the keyframes only.

The set of videos collected from the text-based retrieval with the YouTube search
engine are represented by a subset of keyframes (Intra-coded frames or I-frames)
related to the CODEC used for compressing and packing the video. Local covariant
features are detected and described on every selected keyframe. This stage avoids
the wide-baseline stereo matching over all frames of the video. The object model is
matched against up to 1% of the total number of frames. For shot boundary detection,
we applied a simple detector [23], that thresholds the sum of pixel-wise absolute

81



4. Relevant shot detection................................
differences. To reduce the number of selected keyframes, we dropped keyframes
close to the shot boundary, as these are typically corrupted by the shot transition.
Finally, after the feature extraction step of the video frames, the encoded video is
discarded to avoid memory consumption since the set of features (geometries and
descriptor) are the representation required in the next components.

The CODEC of the video usually do not include a keyframe if the content from one
frame to the next one does not change significantly, therefore, detecting local features
in keyframes only save processing and memory consumption without increasing
recall of the system. Additionally, analyzing similar (too close in time) frame causes
overfiring of our system which is reflected in multiple time markers (see Sec. 4.8) in
the same shot. Depending on the CODEC, contiguous keyframes are inserted thus
down-sampling the video by keyframes is inefficient. In our pipeline the videos are
represented with a larger distance between keyframes indicated by a scale factor, for
instance, describe every the nearest keyframe every 100 frames.
A clever strategy is based on shot segmentation by sampling the keyframe located at
the middle of every shot. In this thesis, we present an approach for detecting shot
boundaries based on stereo matching and it is introduced in details in Sec. 4.7.2.

4.6 Object detection in video frames

A shot was regarded as relevant if the object or landmark appears on at least one
of its selected frames. The object recognition was addressed as a Wide-Baseline
Stereo Matching problem, as proposed in e.g. [112]. To efficiently detect the nearest
neighbor SIFT descriptors, approximate nearest neighbor search was used [138].
Global geometric model and supporting tentative correspondences were robustly
estimated using LO-RANSAC [36]. The geometric model of homography or affine
transformation were compared.

The relevance of the video with respect to the object model was given by the
number of relevant frames that appear in the video.

4.7 Shot segmentation by wide-baseline stereo

In many problems like video representation, retrieval and scene segmentation a
fundamental preprocessing step is the shot segmentation. Shots are defined as a
subsets of adjacent frames captured with the same camera continuously without

82



...................... 4.7. Shot segmentation by wide-baseline stereo

time interruptions[15]. In this thesis we introduce the Stereo Shot Detector (SSD), a
novel shot detection approach that computes the features required for the later object
recognition step in our pipeline. The goal is to locate pairs of frames that contain
a transition between them along the video sequence, named transition boundaries
(TB). The boundary between two consecutive shots is known as a transition and,
commonly, we can find them as sharp or gradual transitions, including complex
animations.

4.7.1 Related work

A similar approach to our proposal is [65] and it works as follows, this method used
SIFT to find image correspondence, and applied a fixed threshold to the number
of matched points of neighboring video frames to find the transitions. Our method
differs from this method in several aspects. First, our method does not rely on a
fixed threshold of the number of matched points; the threshold applied in our method
is varied with the local maxima and minima of the number of matches, which can
handle the variations of transitions better. Second, we do not match neighboring
frames or frames apart from a fixed period only, but also match nonadjacent frames
inferred by shot-change interval estimation, which can further increase the detection
accuracy. Third, our method can find both the shot boundaries and the transition
intervals of shots.

4.7.2 SSD algorithm

The SSD algorithm addresses the problem of finding TBs by alternating between two
main steps. First, a loose TB is found by taking an anchor and a target frame which
indexes are ianchor and itarget respectively. The latter is conditional moved forward
in a manner of line search with constant step length (α) and positive step direction
(δ) since the target frame is moving forward in every iterations. A line search method
seeks for the position of a local minimum i∗ of a function f(i) iteratively as follows,

it+1 = it + δt, (4.3)

δt+1 = α · δt, (4.4)

where, it is the index of the (target) frame to be compare with the anchor one.
Notice that α in Eq. 4.3 is constant, this is due to in our approach there is not
such a function f to be minimized enabling this parameter to be tuned during the
search. Experimentally we found that 1.4 gives the best results. The condition to
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update the position of the target frame is the output of a binary similarity function
S(Ii, Ij) ∈ {0, 1} where Ii, Ij ∈ RM×N are frames of the video sequence.

S(Ii, Ij) =
{

1 if STEREOMATCH(Ii, Ij) ≥ L,
0 otherwise,

(4.5)

where, STEREOMATCH(·, ·) is a function that register the two input images by
wide-baseline stereo matching and its codomain is the number of local features
matched correctly (inliers) with respect to a geometric model, the homography in our
approach, and L is the threshold for the minimum number of inlier matches needed
in a pair to regard them as similar images. The target frame index is moved forward if
the current anchor and target frames are similar, otherwise this step finishes assuming
the putative transition is located between the anchor and the latest target frames.

In the second step, a binary search is performed to get tighter TB or discard the
tentative transition. The video interval defined between the initial anchor and target
frames is split recursively. The recursion depth is constrained by the frame pair
similarity, i.e. if S(Ii, Ij) = 1 then the recursion halts discarding the transition,
otherwise continues until a minimum interval length is reached returning the indexes
of the verified TB. Finally, the summarized method is presented in the Alg. 3 and
Fig. 4.9 shows a visualization of the line (above arrows) and binary search (below
arrows) to detect a gradual transition.

Figure 4.9: Linear and binary search of the SSD algorithm. Arrows on top indicate the
forward step for finding the widest frame interval (orange squares) where the potential
transition is located. Arrows below indicate the binary search to find tighter transition
boundaries(blue squares). The correctly matched images are indicated with green
arrows, otherwise in red.

4.7.3 Evaluation of SSD

The evaluations of the SSD shot boundary detector is performed on two publicly
available datasets. The RAI dataset is a collection of ten challenging broadcasting
videos from the Rai Scuola video archive [14], mainly documentaries and talk shows.
The BBC Planet Earth (BBCPE) dataset [13] contains ground truth shots and scene
annotation for each of the 11 episodes of the BBC Planet Earth educational TV
Series. Each shot and scene has been manually annotated and verified by a set of
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Algorithm 3 Stereo Shot Detector
Input: Video V , initial position δinit, step size α, spliting threshold µ.
Output: Set T of transitions
T ← {}
ianchor ← 1
while not end-of-video do

δ ← δinit
itarget ← ianchor + δ
while S(V (ianchor), V (itarget)) do

δ ← α · δ
itested ← itarget
itarget ← ianchor + δ

ianchor ← tend
Tpart ← BINARYSEARCH(itested, itarget)
T ← {T ∪ Tpart}

return T
procedure BINARYSEARCH(tbegin, tend)

if tend − tbegin > µ then
tmid ← b0.5 · (tend − tbegin)e
if S(V (tbegin), V (tmid)) then

Tleft ← {}
else

Tleft ← BINARYSEARCH(tbegin, tmid)
if S(V (tmid), V (tend)) then

Tright ← {}
else

Tright ← BINARYSEARCH(tmid, tend)
T ← {Tleft ∪ Tright}

else
T ← {(tbegin, tend)}

return T

human experts. The datasets contains the indexes of the frames where the transitions
between one shot to the next one are. In addition, the transitions are labeled as hard,
smooth and gradient.

We compare the performance of SSD against a standard approach called the
ImageLab Shot Detector (ILSD) [15] which is presented as part of a complete
pipeline for story detection [16]. The SSD and ILSD are compared in the Table 4.3
and 4.2, respectively. The results shows that our method does not outperform its
competitor in none of the datasets. However, the performance on the RAI dataset is
comparable. The analysis of the failure cases shows that the performance is hurt by
the fact that some of the shot boundaries are abrupt camera pose changes keeping
the same scene. In such cases, the shot boundary is not detected because SSD gets
a high number of correctly matched features. Others failure cases are related to
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4. Relevant shot detection................................
static images superposed to the videos, i.e. brand logos or static stylized text. The
static content is matched across all shots losing all shot boundaries. Both factors
increments the number of false negatives in the evaluation of the SSD. Fixing the
failure cases is part of our future work.

Video ILSD [15] SSD

V1 0.97 0.89
V2 0.97 0.86
V3 0.95 0.85
V4 0.78 0.87
V5 0.38 0.62
V6 0.96 0.59
V7 0.94 0.66
V8 0.94 0.86
V9 0.76 0.86
V10 0.77 0.79

Average 0.84 0.79

Table 4.2: Shot detection performance in the RAI dataset [15] with 10 broadcast videos.
SSD algorithm (our approach) outperforms ILSD in 4 cases significantly, even so, in
average it performs worse. Results are presented in F-score and bold font indicates
better performance.

4.8 WEB GUI

The interaction of the user with the system is performed through a graphical inter-
face, which allows to query the multiple databases for retrieving images and video.
Figure 4.10 shows the three main sections in the interface: The visualizer where the
videos are played (highlighted in a red frame), the list of videos sorted by their visual
relevance (blue frame) from the sharing web-site and, finally, the list of time stamps
sorted chronologically to the position in the video corresponding to the beginning of
the scene where the object was detected (orange frame).

The example shown in Figure 4.10 belongs to the search results of the textual
query Pisa tower. The list of relevant shots includes the frame index and time
(hh:mm:ss) where the marker is located, see Figure 4.11 for an example searching
for Notre Dame cathedral.
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Video ILSD [15] SSD

From Pole to Pole 0.92 0.62
Mountains 0.89 0.76
Ice Worlds 0.91 0.63

Great Plains 0.91 0.61
Jungles 0.90 0.71

Seasonal Forests 0.88 0.73
Fresh Water 0.92 0.58
Ocean Deep 0.70 0.45
Shallow Seas 0.93 0.45

Caves 0.77 0.63
Deserts 0.89 0.75

Average 0.88 0.63

Table 4.3: Shot detection performance in the BBCPE dataset [13] with 11 videos of an
educational TV series. Results are presented in F-score and bold font indicates better
performance.

4.9 Evaluation of Relevance Assessment and
Re-ranking

The evaluation of the video re-ranking by visual assessment is addressed in two
parts. First, the performance of the object detection in videos by stereo matching is
tested to compare the modeling strategies introduced in Sec. 4.4 and their matching
capabilities under the strategies described in Sec. 4.4.6. Second, the performance of
the video re-ranking is tested as well, since the final order of the video list assigned
by the re-ranking approach with respect to the visual relevance with the query must
be tested. Priorly to our work, there were no benchmarks or dataset with ground truth
annotations of videos and image suitable to evaluate our setup publicly available.

4.9.1 Specific Object Search dataset

The task of detecting a specific object in video sequences requires that the user
provides a definition of the query, i.e. the name and images of the object, thus a
model can be constructed from that data to do the search. In order to measure the
performance of the outcomes of the system, we require a benchmark or labeled
dataset. For similar tasks, one can find different dataset, for instance, for video
classification [1], human activity recognition [115], sport recognition [142], shot
boundary detection [176], among other. To the extent of our knowledge, so far there
is no dataset for searching specific object on videos available in the literature. Hence,
we decided to present a new dataset suitable for this task.
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Pisa tower

Notre Dame cathedral

Figure 4.10: Screenshots of the user interface. The pipeline allows the user to navigate
through the video list (red rectangle) sorted by relevance with respect to the visual
interest, visualize the videos in the player ((orange rectangle)) and pick specific shots
depicting the query (blue rectangle).

The evaluation of the detection pipeline requires test data with multi-media in-
formation. We introduce a labeled dataset named Specific Object Search (SOS)
dataset for detection on videos as a contribution of this work. The collection and
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Figure 4.11: Example of shot selection for the query Notre Dame cathedral in one
element of the ranked list of potential relevant videos. On the left side, the table with
the five shots where the object of interest appears with their time stamps. On the right,
the first frame of the shot with the index of the place in the table.

construction of the dataset is conformed by 100 videos and 70 images retrieved
under 10 queries:

. Petra city in Jordan. Notre Dame cathedral in France. Taj Mahal palace in India. The Mona Lisa painting in France.Monumento a la Patria in Mexico. Christ The Redeemer in Brazil. Coca-Cola logo. Lola perfume container. Starbucks logo. Virgin Mary painting in Mexico

For each query, 10 videos are retrieved from YouTube and 7 images from Google
images by means of textual search only. The video sets has 7 videos with the
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4. Relevant shot detection................................
corresponding object captured in at least one shot (positives) and the remaining
three videos are confusers (negatives). The image sets contain positive images only
since confusers are supposed to be provided as dependency of the application. In
Fig. 4.12, the images of the SOS dataset are presented. The videos are provided with
a ground truth labelling. The schema to classify the frames manually follows the
classes introduced in the Oxford 5K dataset [148] for image retrieval. There are four
labels: NO-OBJECT for images that do not contain the query, GOOD for a nice and
clear picture of the object, OK when more than 25% of the object is clearly visible
and JUNK when less than 25% of the object is visible, or there are very high levels
of occlusion or distortion.

The relevant shot detection algorithm was applied to a dataset of images and videos
collected from 10 different queries: Petra city in Jordan, Notre Dame cathedral in
France, Taj Mahal palace in India, The Mona Lisa painting in France, The Merida’s
Monumento a la Patria in Mexico, Christ The Redeemer in Brazil, the Coca-Cola
logo, the Lola perfume container, Starbucks logo and Virgin Mary painting.

The image pools contain 7 images (top 7 images in the mode support ranked by
the HOD) per query object with a fixed width of 640 pixels and keeping the aspect
ratio. All images were stored in JPEG format. The number of local affine covariant
features detected on the images are presented on Tab. 4.1.

The video set contains 100 videos downloaded from You Tube. Every object of
interest has 10 videos, 7 of them actually depict the object and 3 of them works as
confusers (videos were retrieved by querying You-Tube with the same text search
but the object never appears on scene).

The videos have an average duration of 3 minutes, the frame rate was fixed 25 fps,
the size of the frames is 640 × 480 pixels. All videos were stored with the codec
H.264, which inserts a keyframe (Intra-coded picture) every 60 frames. Notice that
only keyframes were processed.

Finally, the SOS dataset is provided with ground truth relevance order of the
videos for each object. The frame-by-frame annotation is used to score the videos
with the number of GOOD and OK frames, hence the ground truth is the sorted list
with respect to this score. Only the 10 videos of a specific query are included in a
ground truth list, hence we end up with 10 lists. The confuser videos are not sorted
since the permutation of them have no influence in the performance metric.
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Cocacola

Guadalupe

Monumento a la
Patria

Starbucks

Cristo Redentor

Notre Dame

Taj Mahal

Floris

Mona Lisa

Petra Jordan

Figure 4.12: Images of the Specific Object Search (SOS) dataset. Each row corre-
sponds to the textual query presented at the left side column. The images were retrieved
from Google images searching for the queries.
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Guadalupe

Monumento a la Patria

Starbucks

Cristo Redentor

Notre Dame

Taj Mahal

Floris

Mona Lisa

Petra Jordan

Figure 4.13: Videos of the Specific Object Search (SOS) dataset. Three video se-
quences for each query are sampled homogeneously. Along the sequences only 20
frames equally separated are shown row-wise. The videos were retrieved from YouTube
by text searching for the queries. The labelling of the frames is indicated by the colored
borders, the GOOD frames are green, the OK frames are red, the JUNK frames are
blue and the NO-OBJECT frames are black.

4.9.2 Experiments

The experiments for testing the performance of the approach use the SOS dataset, 10
queries or objects of interest with 10 related videos each. The evaluation results for92
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the two main tasks are presented in the following sections.

Detection of SOS queries

The four modeling strategies (see Sec. 4.4) are compared in the task of detecting the
object of interest in the videos in the configuration of wide-baseline stereo matching.
All models are computed with 7 images (full set) of the dataset for a corresponding
query, and we present the results over the 10 queries.

The pipeline is configured with four feature detectors of different geometries, i.e.
the affine covariant Hessian detector (HessAff), ORB, Saddle and SURF detections.
Regarding the descriptors, we experiment with rBRIEF, SURF and SIFT. Finally,
the geometric verification step performed by LO-RANSAC approximates affinity
(AF) and Homography (HG) as the geometric models.

Coca cola Christ Reedimer

Floris Guadalupe

Mona Lisa Monumento Bandera

Notre Dame cathedral Petra Jordan

Starbucks logo Taj Mahal

Figure 4.14: Performance comparison of the four model approaches on the 10 land-
marks of the SOS dataset. The Y -axis is the Mean Average-Precision and the X-axis
indicates the settings of the stereo matcher, i.e. feature detector+ descriptor + RANSAC
model, where AF holds for Affinity and HG for Homography.

93



4. Relevant shot detection................................
We compare the performance of the modeling approaches with all possible setups

(parameter settings) in Fig. 4.14 that shows the mean average precision (mAP) of the
detector under a specific setting <detector> + <descriptor> + <geometric model>.
We group the bar plots query-wise since we want to evidence the kind of scenes
where the setups perform the best or, in the other hand, the poorest performance for
an specific object.

Complementary, Fig. 4.15 shows the mAP for each modeling strategy in average
across all queries, in order to simplify the comparison of the setups and models. In
most of the cases, Hessian Affine detector performs the best which is expectable
based on the stronger normalization of the images patches before descriptions and
the multiple filters to keep very distinguishable keypoints with a high precision in
the scale selection. However, Hessian Affine is a very costly detector that gives place
to the second best performance detector Saddle in average.

Figure 4.15: Performance comparison of the four model approaches on the SOS
dataset. The Y -axis is the Mean Average-Precision and the X-axis indicates the mod-
elling approach used as query, i.e. feature detector + descriptor + RANSAC model,
where AF holds for Affinity and HG for Homography.
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Figure 4.16: (a) Precision-Recall curves on SOS dataset for Union and Salient model.
The mean processing time per frame is shown in the legend. (b) Recall/Precision curves
for the "Salient, AF, 1GI" method applied to the 10 landmarks.

Supplementary, we present a specific comparison between Union and Salient
models. In this experiment we focus in the strategies for tentative correspondences
described in Sec. 4.4.6, i.e. 2NN and 1GI. For the sake of simplicity, the local
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features are detected with HessAffine only, and for consistency with the previous
experiment, the geometric verification uses HG [36] and AF [35] as models.

Fig. 4.16 (a) shows precision-recall curves obtained with the 8 setups. It is worth
noting that verifying the geometric consistency of feature matches with AF model
gives better performance above the HG, due to low inlier ratio HG is unstable and
converges incorrect solutions that drop all correct matches. The experiment also
revels that Union model performs slightly better compared to Salient model with
higher precision and recall. Finally, 1GI gives no significant improvement to Salient
model as a consequence of removing very similar features and multiple instances of
the same point by the modeling strategy.

Fig. 4.17 presents two examples of the matching results on the Taj Mahal palace
landmark, using HessAffine, SIFT and AF. The Union model (visualized in the
left side with the reference image) is matched with a single frame belonging to a
relevant video. In Fig. 4.17(a) the model is matched against a positive sample (frame
containing the query and labeled as GOOD) shown in the right side of the figure, and
Fig. 4.17(b) shows the model matched with a negative sample (the query does not
appear in the frame and labeled as NO-OBJECT). The visualizations contain correct
matches (green lines) and the geometries (blue ellipses) of the keypoints involved.

The pipeline finds 39 correct feature matches with 0.4 inlier ratio in the positive
sample and 6 inliers with 0.11 inlier ratio in the negative sample, even though there
are no correct matches between the model and the frame. The threshold related to
the number of inliers to classifying a frame as positive sample is set to 12, therefore
the decision is correct in both examples.

Fixing the parameter of the pipeline to Union model, 1GI and AF, we compute
the precision-recall curve with training data composed by 6 out of 7 relevant videos
from the 10 objects of SOS dataset. We observe that precision is 0.94 and recall
0.96 for an inlier threshold equal to 12. The validation dataset consist of 10 relevant
videos, one per landmark, taken out from the training set. The evaluation with inlier
threshold equal to 12 gets average recall and precision of 0.88 and 0.94, respectively,
with a average processing time per frame of 0.49 sec. The absolute difference
between training and testing is 0.05 and 0.02 for precision and recall, respectively.

In practice, the selection of the inlier threshold is highly dependent on the appli-
cation, for instance, the classification of videos into relevant or irrelevant requires
at least true positive and the number of false positives does not affect the result.
Then, for this task the pipeline can be tune for a recall higher than 0.95 with a low
precision of 0.3 since with only one frame classified correctly, the whole video is
classified as relevant, which is correct up to a score of relevance.

95



4. Relevant shot detection................................

(a)

(b)

Figure 4.17: Examples of Union object model matched with a video frame. (a)
Positive frame with the query object appearing in the frame and (b) a negative samples
where the object is not captured in the frame. In both cases, the reference image of
the model is at the left side and the target frame at the right side. The correct features
matches are indicated with green lines, the geometries of the keypoints are drawn with
blue ellipses and red and blue lines inside the ellipses correspond to the X and Y axis
of the canonical frame of the features.

Speed

In the experiment introduced in Sec. 4.9.2, the setup with Union model, AF geometric
model, and 1GI matching strategy gets the best performance with respect to precision
and recall, however, such setup gets the second fastest mean processing time per
frame. The fastest processing time is obtained with Salient model, AF and 2NN,
with a lower precision compared to the fastest setup with an absolute difference of
8%. The mean processing time per frame with the last setup is 0.83 sec, see Fig. 4.18
for time ratios per processing stage. The processing time for 1GI and 2NN were
not significantly different because of the previous SIFT-XY filtering that suppresses
multiple instances of the same feature which hurt the 2NN matching strategy.

4.9.3 Video Re-ranking evaluation

The SOS dataset contains the sorted lists of videos, one per query. The videos are
sorted by relevance following the criterion described in Sec. 4.9.1. The order of
the videos is the ground truth to validate the re-ranking step of our pipeline. In
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Figure 4.18: The fraction of the time spent in the main steps of the relevance-shot
detection (percentages): building the object representation (top), the frame selection
(middle) and the detection task (bottom).

order to compare the performance of the re-ranking approach with the text-based
search ranked lists, we propose to use the Kendall tau rank correlation coefficients.
Basically, higher correlation with the ground truth list (order) the better performance.
The re-ranked list by our method are higher correlated with the ground truth in 9 of
10 SOS objects, see Table 4.1 for more details.

In order to test the re-ranking step in a more challenging testing set, we increase
the number of confusers. In the following experiment, the testing dataset contains
all videos (relevant ones and confusers) of 6 queries, i.e. 60 videos in total. In
validation, relevant videos of different objects rather than the current query are
considered confusers, since none of them contain other SOS objects.

The precision-recall curves for the 6 queries with the Salient model are shown in
Fig. 4.16 (b). The curves show that for recall 0.95, the average precision is 0.67 and
mAP is 0.92 across all queries. For the Union model for the same recall value, the
average precision is 0.64 with mAP of 0.9.

In our experiments, the approach have a poor performance with the query Christ
Redeemer, due to the fact that geometries and descriptors of the keypoints detectable
in the statue vary with illumination changes. The statue is almost textureless and
the observable shapes are artifacts of the shades and shadows projected over the
surface. In addition, the relevant videos for this specific query were recorded in
very challenging view points, i.e. from long distance, blurring caused by camera
vibrations, or strong perspective changes with respect to the images used to model
the query.

Considering the video representation (see Sec. 4.5) and the full length of the
videos, our average processing time is equivalent to 454.5 fps, the ratios of the time
spent on each step of the pipeline is presented in 4.18.
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Setting a side the model computation, the shot segmentation, and the video

subsampling, the relevance shot detection process the videos with a frame rate of 208
fps. The stereo matching of the images in the pool, as part of the object modeling step,
is the most expensive step in time and computation resources. However, modeling
the object has constant cost with respect to the length of the videos and number of
videos retrieved by text-based search.

Finally, our experiments show that there is a trade-off between the detection
accuracy and speed depending on the pipeline settings. The most accurate detection
is reached by the HessAffine detector with the slowest performance. On the other
hand, Saddle gets the highest precision and recall for the fastest processing time.
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Chapter 5

Conclusions

In this chapter we discuss the conclusions about the two main approaches presented
in this thesis. In the Section 5.1 we present the discussion is focused on the video
re-ranking by the relevant assessment approach (see Chapter 4). In addition, the
Section 5.2 presents our conclusions of our Saddle detector. Finally, in Section 5.3 we
discuss the future steps in the different research topics presented in the dissertation.

5.1 Relevance assessment

In the thesis, we have considered the following problem. Given a set of images
that includes images of an object of interest and possibly outliers and a pool of
videos, re-rank the videos by relevance to the object of interest. Further, the videos
are augmented with a list of shots depicting the object of interest. The proposed
approach first builds a visual model of the object of interest based on local image
features. The relevant shot detection builds on wide baseline stereo matching. Shot
relevance is defined as the recording time spent capturing the object of interest
reflected in the number of frames depicting it. A number of algorithmic options have
been experimentally evaluated. The experiments were carried out on a set of 100
videos collected querying You-Tube with 10 different text phrases.

The best performing method builds the model as a union of features from all exam-
ple images and constructed the tentative correspondences using the 1st geometrically
inconsistent rule. Averaged over the 10 landmarks, mAP is 0.92 querying the object
model based on salient features that turns out to outperforms the union model by 2%
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on mAP. The implementation runs faster than real-time at 208 fps.

5.2 Saddle

Experiments show that the Saddle features are general, evenly spread ad appearing in
high density in a range of images. The Saddle detector is among the fastest proposed.
In comparison with detector with similar speed, the Saddle features show superior
matching performance on number of challenging datasets, and it shows to have better
coverage with respect to ORB on detection. Our features matched correctly are wider
spread on the image compared to ORB after matching under the same conditions.
Furthermore, a recently proposed stability evaluation of interest point detectors [67]
on a street-level view dataset shows that Saddle is the best performing detector. After
reprojection, Saddle overlaps the negative determinant Hessian features on natural
images.

Under some conditions the repeatability and the number of (descriptor-independent)
correspondences is better for Saddle compared to ORB. In order to find the best
setup for Saddle detector, we run a experiment aimed to find a correlation between
the number of solved problems (image pairs correctly matched) and F1 score. The
matching strategy known as first geometric inconsistent with Hamming distance
improves significantly the inlier ratio compared to the standard hard thresholding.

5.3 Future work

In this section we discuss some of the future directions for further work in the topic.

The experiments for testing the location accuracy of keypoint detectors, presented
in Section 3.3, show that Saddle is outperformed by ORB with a lower mean
reprojection error of inlier matches. The main reason is that Saddle mostly fires in
fringe-like regions (see Fig. 3.7), structures that allow location drifting related to
the aperture problem. It is possible to avoid firing Saddle in this kind of regions
increasing ε, however the number of keypoints drops very fast with this parameter
change. It is worth to research a solution for this trade off without losing speed in
detection by adding expensive filtering criteria.

We proposed Saddle as a similarity covariant feature detector that it is inspired by
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ORB, and we show that it is suitable for a similar detection/description framework.
The approach for computing the orientation of Saddle keypoints is the intensity
centroid to be described by rBRIEF. Such orientation estimation is unstable by
construction at intensity saddle points but it is convenient for our task because can
be computed very fast. The standard histogram of gradient orientation [106] gives a
robust estimation at a very high computational cost, even the orientation computed
in SURF descriptor is significant slower than rBRIEF. Therefore, a very fast and
robust orientation estimation for saddle points is an important topic to research and
it is out of the scope of this thesis.

In our experiments for image matching using BRIEF descriptor, there is no
retraining of the descriptor for our specific detector. BRIEF is trained on FAST
features that fires in high contrast corners which is a different morphology than
Saddle detection. Additionally, the image dataset used to collect image patches of
FAST detection is PASCAL dataset, which lead us to research on the effects of using
more diverse dataset for training and improving the generalization of the descriptor.
In consequence, it is worth boosting the descriptive power of BRIEF as one of the
fastest binary descriptor for our detector.

In the relevancy assessment for visual video re-raking there is plenty room for
improvement, for instance, expanding the pool of images progressively. Once the
model is constructed with the pool as input, it is possible to include frames where the
query is detected while the video is scanned sequentially. The operation is almost
for free since the stereo matching is part of the object detection step, therefore, the
estimated geometric relation, between model and frame, is an available outcome
used to reproject the features of the additional view into the model. Previous work
on adding new views of the target object can be found for visual object tracking [76].

On the other hand, the incremental strategy to enlarge the pool of images with
different views of the object leads to a natural extension of our work to model the
query as a 3-D model. A Strong inspiration can be found in the work of Lebeda [91],
which combines techniques from the fields of visual tracking, SfM and SLAM to
model the 3-D structure of the object to address the appearance changes of the
objects due to out-of-plane rotations.

In relation to the SSD shot boundary detector proposed in this thesis, there is a
potential improvement in the forwarding stage. Specifically, the coefficients of the
linear search can be learned while the video scan is performed. The intuition is that
certain types of videos has a characteristic behavior, i.e. length and number of shots
of a documentary, soap opera, sport video, etc. Statistic models can be computed
from the temporal location of the shot boundaries detected while the video is scanned
in order to predict the length of the following shots.
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Finally, in the technical part of the proposed solution, as we describe in Section 4.5,

downloading videos is a mandatory step in the pipeline that represent a bottleneck
in the workflow. Currently, YouTube does not grant access to the encoded videos
directly. It is desirable to read out of this step having direct access to a video
dataset. A possible solution is to incorporate the video re-ranking by visual relevance
assessment pipeline as part of the search engine of the video sharing website.
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